SuorTEST REMAINING FiLE FirsT SCHEDULING

ON RepHAT LINUX 9

Submitted to the
Department of Computer Science
College of Computing Sciences

New Jersey Institute of Technology

in partial fulfillment of
the requirements of the degree of
Master of Science
By
Mihir C Patel



APPROVALS

Proposal Number:

Approved By

(Dr. Teunis J. Ott)

Date Submitted




ABSTRACT

In today’s world a client accessing a busy web server can expect a large
response time. In this project response time is defined as the time from when
the client sends out the SYN-packet requesting to open a connection until the
client receives the last byte of the file requested. This project proposes a
method for improving the performance of web servers. The idea is to give
preference to requests for small files. The implementation is done in the linux
kernel (redhat 9) and involves changing the way in which packets are
enqueued in a network device’s queue. The shortest remaining file first (SRFF)
scheduling technique, defined later, gives priority to requests for short files, or
those requests with short remaining file size. Now it is clear that this kind of
scheduling reduces the waiting time in the queue, in particular the requests for
small files. Preempting long requests for short request is desirable because
forcing long requests to wait behind shorter ones results in a much lower mean
response time than the situation where short requests wait behind longer ones.
The key to this project is placing packets in the device queue. In this project
we assign priority to a packet depending on the number of bytes sent by that
flow (the current packet’s flow). Thus a small request behind a large one does
not waste time waiting in the queue.

This project uses network sniffing software, Tcpdump, for testing purpose.



TaBLE oOF CONTENTS

1. INTRODUCTION
1.1 PrOBLEM STATEMENT (6)
1.2 Previous Work (12)
1.3 Grossory (13)
2. DEsiGN
2.1 KerNEL RECOMPILATION APPROACH (15)
2.1.1 StEPs ForR KERNEL RECOMPILATION (16)
2.2 LoapaBLE KERNEL MoDULE ApProAcCH (18)
2.3 DECIDING FACTOR FOR AN APPROACH (19)
2.4 DESCRIPTION OF THE VARIOUS NETFILTER Hooks (20)
2.5 Cuoosine THE Hook (24)
3. BACKGROUND
3.1 DESCRIPTION OF DEVICE ACTIVATION AND FUCNTIONS USED (27)
4. ALGORITHM
4.1 ALcoriTHM FOR THIS PrOJECT (31)
S. IMPLEMENTATION
5.1 Cobk (34)
5.2 ExpLANATION OF THE CobE (39)
6. Tests AND REsuLts (49)
7. Furure IMPROVEMENTS (72)

8. ProBLEMS ENCOUNTERED (74)



9. REFERENCES (75)

1. ArpenpIx (76)



1 | NTRODUCTI ON

1.1 ProsLEM StATEMENT

The project is an attenpt to inprove the response
time offered (in certain cases) by a server. Since
there are multiple clients requesting data from a
server, the server has a predefined nechanism for
the order in which it serves these requests. The
response to these requests is sent in fixed size
packets, so depending on the request, it my be
served in a single packet or in mnultiple packets.
Once the packets are ready to be sent out they are
given to the device driver. The device driver then
transmts the packet on the wire. Since multiple
requests are served simultaneously at a server the
speed at which packets are generated and given to
the device may be faster than the speed at which a
device can actually send these packets on the wre.
So a queue is associated with a device where these
packets are put in before they hit the wire. The
devi ce then grabs packets fromthis queue at its own

pace and sends it out on the wre.



Linux in its default state has three queues for
every network device. The three queues, nanely qo0,
gl and g2 have priorities between them gO has the
hi ghest priority followed by gl and then 2. Packets
are always drained from g0 first, if g0 is enpty
packets are renoved from ql and if both g0 and ql
are enpty packets are renoved from q2. Al the
gueues have the sane naxi mum perm ssible | ength (100
packets in case of Ethernet). Each queue internally
has FIFO within it. In this project we assign a
value to the priority field of a packet depending on
whi ch queue the packet needs to be inserted. The
first few packets of a flow are inserted in qO, the
queue with the highest priority. Wen the nunber of
packets of a flow cross a set limt, say xl1, they
are inserted into ql, the queue with |esser priority
than 0. Wwen the nunber of packets of a flow
crosses another |imt, say x2 where x2 > x1, further
packets of this flow are inserted in g2, the queue
with the least priority. By doing so we guarantee
that a small flow behind a big one does not suffer a
long wait tinme in the queue. An exanple is as

descri bed bel ow.



Consider that a server has two requests. Request one
came first and is a request for a large file.
Request two conmes after and is a request for a snmal

file. By default packets are filled as follows

Q2 Q1 Q0

Fig. 1 Device queue with packets in it.

1 — packets due to request 1

2 — packets due to request 2

By filling the device gueue as shown above, packets
due to request 1 start filling the queue first and
by the tinme packets due to request two are to be
Inserted, the queue is filled to a good extent and
as the queues follow FIFO discipline the packets of
request 2 are inserted at the tail end of the queue.

This increases the waiting time for packets of

_8-



request 2 in the queue. Nunerically analyzing the
situation, let request 1 generate 50 packets and
request 2 generate 2 packets. Now, request 1 as it
came first has generated packets and starts filling
the queue. By the time request 2 generates packets
and has them ready to be inserted in the queue, the
queue already has about 35 packets due to request 1.
Now the two packets due to request two are inserted
in location 36 and 37 in the queue. Thus a request
that can be served in 2 packets has to wait for the
35 packets in front of it to be served. This adds to
the response tinme of request 2. So instead of
filling the queue as shown above if we give
priorities to flows depending on the nunber of
packets it generates, we can reduce this waiting
tinme.

The sane situation above would be handled by this

project as follows



Q2 Ql QO

== =]=|=]|~=]~]|~
=== ]=]= === ]=|=
—_ = === o o

Fig. 2 Device queue with packets in it.

1 — packets due to request 1

2 — packets due to request 2

This project keeps track of all active flows and
mai ntains a counter for the nunber of bytes sent by
each flow For exanple, the first few packets (say
up to 1500 bytes) of a flow are inserted into @O,
the next few packets (say up to 5000 bytes) of a
flow are inserted into ql and all other packets are
inserted into q2. The nunbers given above are
flexible and we can set them depending up on how we
want to classify a small, nediumor big flow In the
exanple in section 6, we classify a file with |ess

than 5,000,000 bytes as a small file. A file wth

-10 -



nore than 5,000,000 bytes but |ess than 30, 000, 000
bytes as a nedium size file and a file with nore
than 30,000,000 bytes as a large file. So in the
case as above(with limts 1500 and 5000 bytes for
small and nedium files respectively) the first 5
packets due to request 1 are inserted into g0 and
t he subsequent packets due to request 1 are inserted
and into gl. After 15 packets have been inserted in
gl the rest of the packets due to request 1 are
inserted into g2. Thus when packets due to request 2
have their turn to be inserted in the queue, they
are inserted in 0. By doing this the wait time for
packets in the queue reduces, thus inproving the
response tine.

Anal yzing the response tinme of the requests in both
cases (with and wthout nodule) we have the
fol | ow ng:

In the default |inux node request 1 would have been
conpletely served in the tine it takes the systemto
serve 52 packets (50 packets of request 1 and 2
packets of request 2). This is because the two
packets of request 2 are in between the 50 packets

of request 1. The response tinme for request 2 wll

-11 -



be the tine it takes to serve 37 packets, as packets
of request 2 are inserted in location 36 and 37 in
t he queue.

In the case that this project handles the situation,
the response tine for request 1 would be the sane,
(the tinme it takes the systemto serve 52 packets).
The response tinme for request 2 would greatly be
improved as now it is the tine it takes the system
to serve 7 packets (5 packet of request 1 and then
the 2 packets of request 2). Thus we see a
significant inprovenent in the response tine of
certain request(s) at no or negligible expense on

ot her requests.

1.2 prREVIQUS WORK

Many papers have dealt with reducing the response
time for requests at a web server. A lot of these
papers deal wth srr scheduling, which involves
knowi ng the size of the response before hand. The
nost relevant of the papers is one by Mr Harchol
Balter and N khil Bansal. Their work was to bring
srff behavior in web servers. The length of the

transfer in this case was available as it was a http

-12 -



based system A paper by Bender, Chakrabarti and S.
Mut hukri shnan reject this idea of using  srerT
schedul i ng because large files have an arbitrarily
hi gh maxi mrum sl owndown. The idea by Crovella et al is
about connection scheduling at the application |evel
only. This controls the order in which read and
wite calls are made. This does not incorporate any
low |evel scheduling. This inproves the nean

response tine but reduces the server throughput.

1.3 Gossary

| P : I nt ernet Protocol

TCP : Transm ssi on Control Protocol
UDP : User Dat agram Pr ot ocol

| CVP : I nternet Control Message Protocol
ARP : Addr ess Resol ution Protocol
Pfifo : Priority FIFO

net dev : Net wor k Devi ce

dev : Devi ce

df I t : Def aul t

ops : Qper ati ons

ntu : Maxi mum Transfer Unit

I nit : Initialize

-13-



srff X Shortest Remaining File First

srpt : Short est Renmi ni ng Processing Tine
q : Queue

lilo : Li nux Loader

G ub ; Grand Unified Bootl oader

B X Bytes (8 bits)

vB X Mega Bytes (8 * 1076 bits)

Mops : Mega bits per second

-14 -



2 Desion

There are two approaches for inplenenting this
schene

1. Enbed the software in the kernel, involves kernel
reconpil ati on.

2. Insert the software as a | oadabl e kernel nodul e.

A detailed description of the possible approaches is
as follows

2.1 Kernel Recower LaTi o ApPPROACH

In the Kkernel reconpilation nethod we have to
add/ change the file(s) in the linux kernel. This
involves finding a place where inserting these
changes would be plausible. W have to nake sure
that the function(s) we insert are called in all
cases. Thus we also need to change the sequence of
function calls nade, while preserving the calls that
i nux would nmake otherwi se. Once the right place to
insert the function is figured out, the function is
inserted and the sequence of function calls are set
we need to reconpile the kernel. Reconpiling the
kernel involves a series of steps (described bel ow).
A successful reconpilation forms a new inmage of the

kernel. In order for the effects of this new kernel

- 15 -



to be shown we need to reboot the system selecting
the new inmage we created in the list shown during

start up.

2.1.1 Steps FoR RecowpiLing THE KERNEL

First nake copies of all files that we plan to
nodify. Make a log file where all the work is
docunented (i.e, the files that are being nodified
and where copies of the original files are saved and
other inportant things, if any). Now nake necessary
changes in the files (‘.¢’ and/or ‘.h’) and save
them Al so docunent the changes that have been nmde.
The next step before reconpiling the kernel is to
check if there is enough space to have a new inmage
of the kernel. The space utilized can be got using
the ‘df’ command. It is a safe idea to have a new
image of the kernel after reconpilation and not
overwite the default Iinux imge because if for
sone reason the new kernel fails we have the option
to boot from the default Iinux inmge. A new inmge
can be formed by <changing the Mkefile in /

usr/src/linux-2.4/. Change the line starting wth

- 16 -



‘ #extraversi on’ . Save the Mdkefile and do the

following steps to get a new i nage of the kernel

# make nrproper
# make nenuconfig
(This will give you a GJ wth paraneters to be
set.)
# make dep
# make bzl nage
# make nodul es
(This one takes |ong!)
# make nodul es_inst al
# make install
# cd /etc
(Moves you to the directory /etc )
# nmore lilo.conf
(Check the new kernel is listed therel!)
# reboot
(This reboots the system Wen given the choi ce,

choose the new kernel inage).

-17 -



2.2 LoapaBle Kerner MooulE ApproacH

This approach nakes use of the netfilter hooks in
the linux kernel. Hooks are places in the |Iinux
kernel where user defined functions can be inserted.
There are nultiple hooks in the linux kernel, so
first we have to decide which hook we are interested

in. W then wite our function and store it in a

.¢’ file, eg. My_nodule.c. The file in addition to
our function has other functions that help in
registering it at the hook. Now together we call
this file a nodule. W then need to conpile the
nodule to make it wuseable. Conpiling is done by
either witing a conmmand at the pronpt or by a
‘Makefile (explained in section 5.2). This project
uses the nakefile option. A nakefile is witten that
has the command to conpile the file ‘My_nodule.c’ to
give the executable ‘M/_nodule.o’ . This makes
conpilation easy, as now it is as sinple as
executing the nmakefile. This is done by the conmand
‘“make’. Now after using the ‘make’ command we have
the executable for our nodule, and now we need to

insert it into the kernel. Installing this nodule is

done using the comand ‘insnbod M _nodule.o . Now

- 18 -



that the nodule is inserted we can see the changes
in the behavior of the system To stop the effects
of the nodule we need to renove it from the hook.
This is done using the comand ‘rmmod My_nodul e’ .
This unregisters the nmodule from the hook and thus
the effects of this nodule are no nore seen in the
system Any print nessages used in the nodule can be
seen in the log file at /var/log/ messages. Thus when
a nodule is inserted, it registers itself at the
hook and when the functions at the hook are called

the effect of our function is seen.

2.3 Deapbine FAcToR FOR AN APPROACH

In the kernel reconpilation method, for every change
we make we have to reconpile the kernel to see its
effect. Kernel reconpilation as described earlier is
a lengthy process. After the reconpilation we also
need a reboot of the system as we have to be in the
newy created inmge to observe the changes. The new
i mage formed by the kernel reconpilation is an inage
of the whole linux kernel, thus is pretty huge in
ternms of disk space. It is not efficient to have a

new i mage in order to observe a small change in the

-19-



system when alternatives are available. Thus this
approach is expensive in terns of tine and resource
(di sk space).

In the option using netfilter hooks we see the
effect of the <changes in mtter of seconds.
Compiling only one file (in this case M_nodule.c)
and registering it wth the hook. It does not take a
long tine |like Kkernel reconpilation, does not
require a reboot of the system and also takes up
| ess disk space. Using the nodule approach also
makes the software portable as we can copy the
executable and insert it in a different nmachine,
with out any reboot of the new mnmachine. Another
advant age of the nodul e approach is that the nodul e
can be unregistered from the hook at any tine. The
kernel reconpilation nethod would need a reboot to a
di fferent i mage. Thus this project uses the

netfilter approach.

2.4 Description o THE vARlQus NetFiLTER Hooks
Netfilter is a subsystem in the Linux Kernel
Netfilter makes such network tricks as packet

filtering, network address translation (NAT) and

-20 -



connection tracking possible through the use of
various hooks in the kernel’s network code. These
hooks are places that kernel code, either statically
built or in the form of |oadable nodule, can
regi ster functions to be called for specific network
events. An exanple of such an event 1is the
transm ssion of a packet.

Netfilter defines five hooks for | Pv4. The
decl aration of the synbols for these can be found in
l'i nux/ netfilter_ipv4a.h. The nane of these hooks and

a brief description is given bel ow

S.No Hook CALLED
1 NF_IP_PRE_ROUTING  After sanity checks, before routing
decisions.
2 NF _IP LLOCAL_IN After routing decisions if packet
is for this host.
3 NF _IP FORWARD If the packet is destined for

another interface.
4 NF_IP_LOCAL_OUT For packets coming from local
processes on their way out.
5 NF _IP_POST _ROUTIN Just before outbound packets "hit
the wire".
G

Table 1: Names and location of the 5 IPv4 hooks

After t he hook functi ons have done what ever

processing they need to do with a packet they nust

-21 -



return one of the predefined Netfilter return codes.

The codes are as foll ows:

1 NF_DROP Discard the packet.

2  NF_ACCEPT Keep the packet.

3 NF_STOLEN Forget about the packet.

4  NF_QUEUE Queue packet for user space.
5 NF _REPEAT Call this hook function again.

Table 2: Netfilter Return Codes

-22 -



T.

|
|
I
|
|
I
|
|
|
|
I
|
|
I
.

HOOK

net rx_actiond)

T
T

u raise softirgl)
iy — L

T.

skb_guene_tail()

l&

-
netif =)

T

DEVICE

ip 1oy fimish() \i
T I ip_forward()

p 1p local delivery()

ronte.c

p 1p_route mput me()

— 1p_route mput slow()

1/

fib_validate_source()

T

fib_lookup()

I

fib_rules_map_destination()

T

fib_rules_policy()

i

|
: Ip_queus xmuit
|
| '
: HOOK
|
| '
: Ip_gquens xmutl()
i '
|

dst-=oufput
ip_output()

|

|

|

|

I HOOK
|

-

| |

: ip_forward fimshQ) —7—*
|
|
|
|
|

:

ip_forward.c

|
: fib*c
L— ip route imput{) — 1t hash code() I
____________________ H 0
T ip finish output ()

HOOK

|

ip_send() — ip finish ourpus2))

dev=deguens()

—:—h- giisc_restart()

:

dev_quens xnmt imit)

!

dev-=hard_start_xmit()

sch generic.c

Fig. 3 Various Functions and Hooks in the Linux Network Layer data path.

-23-



2.5 CHoosing THE Hoox

When the packet reaches the host from the network,
It goes through the network |ayer functions and when
it reaches net _rx _action(), it is passed to ip_rcv()
i.e. it reaches ip layer. After passing the first
netfilter hook the packet reaches ip_rcv_finish(),

which verifies whether the packet is for |loca

delivery. If it is addressed to this host, the
packet is given to ip_local_delivery(), which in
turn will give it to the appropriate transport |ayer
function. A packet can also reach the IP |ayer
comng from the upper layers (e.g., delivered by
TCP, or UDP, or comng directly to the IP layer from
sone applications).The first function to process the
packet is then ip_queue_ xmt(), which passes the
packet to the output part through ip output(). In
the output part, the last changes to the packet are
made in i p_finish_output() and the function
dev_queue_transmt() is called; the latter enqueues
the packet in the output queue. It also tries to run
t he network schedul er nmechani sm by calling qgdisc_run
(). This pointer will point to different functions,

depending on the scheduler installed. A FIFO

-24 -



scheduler is installed by default. The scheduling
functions (qdisc_restart() and dev_queue xnmit _init
()) are independent of the rest of the IP code. Wen
the output queue is full, qg->enqueue returns an
error which is propagated upward on the IP stack

This error is further propagated to the transport
|l ayer (TCP or UDP). If an incomng packet has a
destination |IP address other than that of the host,
the latter acts as a router (a frequent scenario in
small  networks). If the host is configured to
execute forwarding (this can be seen and set via /
proc/ sys/net/ipv4/ip_forward), it then has to be
processed by a set of conplex but very efficient
functions. If the ip forward variable is set to
zero, it is not forwarded. The route is calculated
by calling ip_route_input(), which (if a fast hash
does not exist) <calls ip_route_input_slow(). The
I p_route_input_slow) function calls t he FI B
(Forward Information Base) set of functions in the
fib*.c files. The FIB structure is quite conplex. If
the packet is a multicast packet, the function that
cal cul ates the set of devices to transmt the packet

to is ip_route_input_nc(). In this case, the IP

_25.



destination is wunchanged. After the route s
calculated, ip_rcv finished() inserts the new IP
destination in the |IP packet and the output device
in the sk _buff structure. The packet is then passed
to the forwarding functions (ip_forward() and
Ip_forward _finish()) which send it to the output
conponents.

Wth the flow of a packet in the network | ayer being
as described above, the place suitable for inserting
our nodule is w~_ip pPostT routineg hook. This is the | ast
hook in the network layer, and it is only by this
time that the packet has in it all the header
i nformati on necessary to calculate the priority of
the packet. If the systemis a router instead of a
server, then our nodule needs to be inserted at

NF__| P_FORWARD.

-26 -



3 BackcRoun

M DESCRI PTION OF DEVICE ACTIVATI ON AND FUCNTI ONS USED

Wien a device is initialized in |linux, queue(s) are
created and associated with the device. These queue
(s) behave according to a certain discipline. The
linux kernel has in it nmany such disciplines that a
gqueue can take. So, when a device is activated a
decision is made as to which discipline would be
assigned to the queue(s) of this device. Assigning a
discipline to a queue is done by giving neaning to
the function pointers that do operations on the
queue. There are a handful of such pointers that
operate on a queue, for exanmple ‘init()’, °‘enqueue
()’, ‘dequeue()’ and a few nore. These pointers are
called to do operations on the queue. So by having
‘“init()’ point at the “init’ function of the desired
discipline, we can have the queue for a device
initialized according to that discipline. Simlarly
by pointing ‘enqueue()’, ‘dequeue()’ and the rest of
the function pointers to the appropriate functions
of a discipline we have the queue behave according
to the discipline. A series of functions are called

during the activation of a device. The first

-7 -



function to be called is ‘dev_open()’. This function
calls the device's private ‘open()’ function. It
also loads the multicast list and calls functions
that creates a device queue and give it a
discipline. It notifies the system about the change
in the state of the device. Calling the ‘dev_open()’
function on an active device is a noop and the
function on failure returns a negative error nunber.
A function call of interest here is the call to
‘dev_activate()’. This call is nmade after the device
IS up, to create the device queue. By default the

functions assigned to the function pointers,

‘“enqueue()’, ‘dequeue()’ and the others are

Enqueue - ‘“pfifo_fast_enqueue

Dequeue - ‘pfifo_fast _dequeue

Requeue - ‘pfifo_fast_requeue

Reset - ‘pfifo_fast_reset’

I nit - ‘pfifo_fast_init’

The default nechanism in linux, pfifo, creates 3

queues and each queue intern has rro nechani sm
within it. So the default nmechanismis a conbination

of priority and rro

-08 -



Enqueuve |-------—-—-—- |

Q2 \\ IQl Qo0
N |
\ |
N I
4V
Dequeue

Device

> |

Tx Ring in device

Fig.4 — shows the three queues and the relation of the enqueue, dequeue functions
with these queues. Also shows the path for a packet to the device and its internal
buffer/ring to the wire.

‘enqueue()’ inserts a packet into one of the three
queues depending on the priority field in the
packet. ‘dequeue()’ tries to renove a packets from
queue ‘q0’. If ‘g0 is enpty it tries to renove a
packet from ‘ql’ and when both ‘q0° and ‘ql are

enpty it tries to renove a packet from ‘g2'. The

-9 .



‘dequeue()’ function may be interrupted, and when it
returns the ‘dequeue()’ function starts again from
‘q0’, thus preference is given to ‘g0 . Packets
after being dequeued are given to the driver which
places them in the device's internal transmt ring

and sends them out on the wre.

-30 -



4 ALGRI THV
4.1 AR THV FOR TH S Praject
This project assigns a priority for every packet
passing through the network layer. This priority
field determ nes into which queue the packet should
be inserted at the device layer (3 queues per
device). An outgoing packet flows through the
various network l|ayers and it reaches the network
| ayer (layer 3) and the hook (nN_ip_rosT RouTing) Where
we have registered our nodule. Al out going packets
that flow through the network |ayer pass through
this hook. By the time the packet reaches the hook
it has its network header ready wth all the
vari abl es given appropriate values. This nodul e does
three major functions

1. keeps a record of the packet

2. creates and mamintains a linked list of active

flows (flows that have at |east one packet in
t he devi ce queue)

3. cleans the linked list at regular intervals
First the nodule checks for the transport |[ayer
protocol of the packet. If the packet is a TCP

packet, then the source and destination port nunbers

-31 -



are got by looking into the transport |ayer header

One conplication that arises here is that, there is
no direct access to the transport |ayer headers from
the network layer. So in order to get the port
nunber we do pointer arithmetic (explained in
section 5.2) on the packet and reach out for the
port nunbers. The rest of the details are obtained
form the network header itself and since our nodule
is at the network |ayer we have direct and conplete
access to all the fields of the network layer. A
node is created that stores the source and
destination |P addresses, source and destination
port nunbers, the transport |ayer protocol, the tine
at which the packet arrived and nunber of data bytes
in the packet. These details are stored and a |inked
list is formed for all the active flows in the
system |If a packet is the first packet of a flow
then a new node is created and inserted into the
linked Iist. OQtherwi se the node corresponding to the
packet details is searched and updated. The only
updates done are the nunber of bytes seen of that
flow and the last tinme a packet of that flow was

seen. Now that we have the nunber of bytes seen from

-32-



that flow, we can decide as to which queue the
packet should go into. For exanple, if the total
nunber of bytes seen of this flow is less than 1500
bytes then it is considered a high priority flow and
the packet should be inserted in to qO0. If the
nunber of bytes seen of this flow is greater than
1500 bytes but less than 5000 bytes then the flowis
considered a noderate flow and the packets at this
time go into ql. If there are nore than 5000 bytes
seen from this flow then it is a big flow and all
the rest of the packets of this flow go into q2.
Once this change is nmade in the packet it is sent
forward as it would go normally. One nore task that
the nodule does is, the clean up of the linked I|ist
created. This is done once every 2500 mlliseconds.
A sequential traversal is done through the nodes in
the linked Iist and if a node has not had any update
in the last 2500 mlliseconds then the node is

del eted assum ng the flow has finished.

-33 -



5 | MPLEMENTAI ON

#define MODULE

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/ip.h>

#include <linux/netfilter.h>
#include <linux/netfilter_ipv4.h>

#include <net/ip.h>

/I user defined data structure to store the active flow details

struct flows

{

__ul6 sport,dport;  // source and destination port numbers
__u32 saddr,daddr; // source and destination IP address

__u8 protocol; // Transport layer protocol name
__u32 num_of_bytes; // Total number of bytes sent by this flow
__u32 tolp; /l Arrival time of the last packet of this flow

struct flows *next;  // Pointer to the next node in the linked list

};

static struct flows *head = NULL;

static struct nf_hook_ops nfho;

// This is the hook function itself

unsigned int hook_func(unsigned int hooknum,
struct sk_buff **skb,

const struct net_device *in,

const struct net_device *out,

-34 -



int (*okfn)(struct sk_buff *))

{

struct flows *cur_pack, *temp, *templ;

cur_pack = (struct flows *) kmalloc(sizeof(struct flows), GFP_KERNEL);
struct sk_buff *sb = *skb;

static __u32 last_clear_table=0;

__u8ip_hlen;

__ul6ip_tot_len;

cur_pack->tolp = jiffies;

ip_hlen = (sb->nh.iph->ihl)*4;

ip_tot_len = ntohs(sb->nh.iph->tot_len);

if(sb->nh.iph->protocol == IPPROTO_TCP)

{

cur_pack->saddr = sb->nh.iph->saddr;

cur_pack->daddr = sb->nh.iph->daddr;

cur_pack->sport = *(unsigned int *) (sb->data + (sb->nh.iph->ihl * 4));
cur_pack->dport = *(unsigned int *) ((sb->data + (sb->nh.iph->ihl * 4)) + 2);
cur_pack->protocol = sb->nh.iph->protocol;

cur_pack->num_of_bytes = (ip_tot_len-ip_hlen);

cur_pack->next = NULL;

/I Checking to see if the last time the linked list was cleared is more than 2500
milliseconds ago, if so clear the linked list.

if((jiffies-last_clear_table)>250)

{

last_clear_table=jiffies;

printk("Time to clean the table \n");

temp=head;

-35-



templ=head;

while(temp!=NULL)

{
if((last_clear_table-temp->tolp)>250)
{

if(temp==head)

{

printk("Deleting the first node \n");
head=head->next;

kfree(temp);

temp=head;

templ=head;

}

else

{

printk("Deleting inbetween node \n");
temp 1->next=temp->next;
kfree(temp);

temp=temp1->next;

}

}

else

{

if(temp==head)

{

temp=temp->next;

}

else

-36 -



temp 1 =temp;
temp=temp->next;

}

}

}
last_clear_table=jiffies;

}

if(head==NULL)

{

head=cur_pack;

}

else

{

temp = head;

while(temp != NULL)

{

if(temp->saddr==cur_pack->saddr && temp->daddr==cur_pack->daddr &&
temp->sport==cur_pack->sport && temp->dport==cur_pack->dport)

{

temp->num_of_bytes = temp->num_of_bytes+cur_pack->num_of_bytes;
temp->tolp=cur_pack->tolp;

if(temp->num_of_bytes>5000)

sb->priority=1; /I queue 2

else if(temp->num_of_bytes>1500)

sb->priority=0; /I queue 1
else

sb->priority=6; /I queue 0
temp=NULL;

-37 -



kfree(cur_pack);

}

else

{
if(temp->next==NULL)
{
temp->next=cur_pack;
temp=NULL;

}

else

temp=temp->next;
}
}
}
}

return NF_ACCEPT;
}

/Mnitialisation routine

int init_module()

{

nfho.hook =hook_func;

nfho.hooknum = NF _IP POST ROUTING;
nfho.pf = PF _INET;

ntho.priority = NF_IP_PRI_FIRST;
nf_register_hook(&nfho);

return O;

}

//Cleanup routine

-38 -



void cleanup_module()

{
nf_unregister_hook(&ntho);

}

5.2 ExpianaTion o THE CopE
The code can be divided into three distinct parts

1. Registering the hook

2. Un registering the hook

3. The hook function (functionality routine)
Regi stration of a hook function is a very sinple
process that revolves around the nf_hook ops
structure, defi ned in i nux/netfilter.h. The
definition of this structure is as follows:

struct nf_hook_ops

{

struct list_head list;

/I user fills in from here down
nf_hookfn * hook;

int pf;

int hooknum;

int priority;  // hooks are ordered in ascending priority

};
The Ilist nenber of this structure is used to
maintain the lists of Netfilter hooks and has no

-39 -



I nportance for hook registration as far as users are
concer ned. Hook is a pointer to a nf_hookfn
function. This is the function that will be called
for t he hook. nf _hookf n IS defi ned in
l'inux/netfilter.h. The pf field specifies a protocol
famly. Valid protocol famlies are available from
| i nux/socket.h but for IPv4 we will use pr_iner. The
hooknum field specifies the particular hook to
install this function for and is one of the values
listed in table 1. Finally, the priority field
specifies where in the order of execution this hook
function should be placed. For |Pv4, acceptable
values are defined in linux/netfilter _ipv4d.h in the
nf _ip_hook priorities enuner ati on. e use
NF_IP_PR_FIRST in our nodule. As this is the only
nodul e we have, it nmakes no difference as to what we
use here, but in the case where we have nore than
one nodule we would like to give a proper order of
execution.

Regi stration of a Netfilter hook requires using a

nf _hook ops structure with the nf_register_hook()
function. nf_register_hook() takes the address of an

nf _hook _ops structure and returns an integer val ue.

- 40 -



However, if we actually | ook at the code for the

nf _regi ster_hook() function in net/core/netfilter.c,
we will notice that it only ever returns a val ue of
zero.

unregi stering a Netfilter hook is a |lot sinpler than
registering it. It is done by calling the function

nf _unregi ster_hook() with the address of the sane
structure we used to register the hook.

To get a better understanding of the functionality
of the code we need to have an understanding of the
data structures used. The nodule has only one user
defined data structure, flows. The definition of the

structure is given bel ow

struct flows

{

__ul6 sport,dport; // source and destination port numbers

__u32 saddr,daddr; // source and destination IP address

__u8 protocol; /l Transport layer protocol name

__u32 num_of_bytes; // Total number of bytes sent by this flow
__u32 tolp; // Arrival time of the last packet of this flow

struct flows *next; // Pointer to the next node in the linked list

};

This structure is used to keep track of all the

active flows in the system It has fields to store

-41 -



the socket details, thereby identifying a flow
‘saddr’ is a 32 bit field that stores the source IP
address of the flow ‘daddr’ is another 32 bit field
that stores the destination |IP address of the flow
‘sport’ and ‘dport’ are 16 bits each and store the
source and destination port nunbers respectively.
These four fields together uniquely identify a flow
The protocol field is a 8 bit field that stores the
transport layer protocol of the flow This is
necessary as there is no point in keeping track of
uwp packets that are connection less and also i1ow
packets where all the four details uniquely
descri bing a socket are unavailable. ‘tolp’ is a 32
bit field that stores the tinme when the |ast packet
of this flow was seen. The tinme is stored in units
of 10 mlliseconds. The last field in this structure
IS a pointer to the next node of this type in the
i nked Iist.

Now that the data structure is clear, we can
understand the code better. Wen the nodule is
called, it first creates a node of the type ‘flows’
and fills in all the values fromthe packet at hand.

‘tolp’, tinme when the packet arrived is got by

-42 -



‘jiffies’. This returns the current time in linux in
10 mlliseconds accurate. The source and destination
P address are got by looking into the network
header of the packet, and as the nodule is at the
network |ayer we have access to this information.
The source and destination port nunbers can be got
formthe transport |ayer header, if the packet is a
Tce packet. So first a check is done to see if the
packet is a Tce packet, and if it is the port nunbers
are got from the transport |ayer header. Since the
nodule is at the network layer, we do not have
direct access to this information, so we do pointer
arithnmetic to gain access to this information. W
have a pointer to the start of the network header
and we know the layout of the packet. W also have
access to the length of the network header, so now
with all the above information we can reach the
transport |ayer header.

Source port nunber and destination port nunber are

the first two fields in the case of 7Tcr packets.

-43 -



Length of Network
Layer Header

<D

s =

Start of Transport
Layer Header

Start of Network
Layer Header

Fig.5 Layout of a Packet showing the various headers.

Source port number = *(ip_header_pointer + (ip_header_length * 4))

Destination port number = *(ip_header_pointer + (ip_header_length *4) + 2)

As the ip_header | ength got fromthe IP header is in
words, we multiply by 4 to get the length of the IP
header in bytes. The ‘+2’ in getting the destination
port nunber is because it is the second field in the
transport |ayer header and the source port nunber

the first one, is 2 bytes long. The next information
we need is the nunber of data bytes (with respect to
the IP part) in the packet. The |IP header gives us
in addition to the IP header length also the total
length of the packet. So the difference in the
values of the two fields is the length of the IP
packet. The next pointer is nmade null, as we are not

sure if a node corresponding to this flow already

-44 -



exists in the linked list. Now with all the details
col lected we check if it is time to clean the |inked
list. If it nmore than 2500 mlliseconds since we
cleaned the linked list, we do a linear traversal
through all the nodes of the linked list. A check is
done every node to see when was the last tine a
packet corresponding to that flow was seen by the
system |If this interval happens to be nore than
2500 mlliseconds, the node is deleted from the
linked list. If no packet of a flow is seen in a
time as high as 2500 mlliseconds then the software
considers the flow to have finished. After the clean
up, we now need to update the linked list wth
respect to the packet at hand. So a search is done
in the linked list to see if the there already is a
node corresponding to this flow (the flow from which
this packet cane). Then the nunber of bytes seen of
this flow is updated and the tine when the |ast
packet of this flow was seen is also updated. Now if
for exanple, the total nunber of bytes seen of this
flow is nore than 5000 bytes the priority field in
the packet is made *1’', inplies that the packet wll

be inserted into g2. if on the other hand the nunber

_45 -



of bytes seen of this flow is less than 5000 but
nore than 1500 then the priority field in the packet
is mde ‘0, inplies that the packet wll be
inserted in ql. If the nunber of bytes of this flow
are |l ess than 1500 bytes then the flow is considered
to be a small flow, so the priority field in the
packet is nade ‘6, inplies that the packet wll be
inserted into q0. After all these updates are done
the new node created for the packet is deleted. If
on the other hand no node (corresponding to the
packet at hand) is found in the linked list it
inmplies that this is the first packet of the flow
So the new node created for this packet is inserted
at the end of the linked list, thereby increasing
t he nunber of active flows in the system by one.

Now that the whole nodule is clear, the next step we
need is to conpile the nodule. As said earlier in
this project we wite a nmakefile.

A makefile is used with the Unix make utility to
determ ne which portions of a programto conpile. A
makefile is basically a script that guides the nake
utility to choose the appropriate programfiles that

are to be conpiled and |inked together.

_46 -



The make utility keeps track of the last tine files
were updated so that it only updates the files
cont ai ni ng changes. However, all of the files that
are dependent on the updated files nmust be conpiled
as well, which can be very tinme-consumng. Wth the
help of makefile, the make utility automates this
conpilation to ensure that all files that have been
updated - and only those - are conpiled and that the
nost recent versions of files are the ones linked to
the main program wthout requiring the user to

performthe tasks separately.

A mekefile contains three types of information for
the nmake program a target (the nane of what the
user is trying to construct); the rules (comands
that tell how to construct the target from the
sources) and a dependency (the reason that the
target should be constructed, which is wusually
because it is out of date in respect to its
conmponents). To create a nakefile, the user nmakes a
file containing shell commands and nanes it
"makefile." The commands are executed according to
the rules in the nmakefile when the user types "nake"

while in the directory containing the file.

-47 -



The nmakefile used in this project is as follows

#Makefile
CC= gcc -l/usr/src/linux-2.4/include
CFLAGS =-02 -D__KERNEL__ -Wall

My_module.o:My_module.c

- 48 -



6 Tests anp ResuTs

The test case considered for this project is as
fol |l ows

A FTP connection between Chekov and Marconi (i nside
the internet |aboratory) is nade. Three files f1, 2
and f3 of Si zes 5. 7TMB, 31. 89MB, 79. 53MB
(approxi mate) respectively are sent from Chekov to
Marconi. The three transfers are initiated al nost
sinmultaneously, in reality f3 initiated before f2
and f2 initiated before f1. Thus bringing the
situation where a request for a snmall file cones
after the request for a big file. The tests were
done thrice without the nodule inserted and thrice
with the nodule inserted. The expected result of the
test was to see a decrease in the response tinme for
the small file when the nodule was inserted in the
Li nux kernel. The response tinme of the big file was
not predicted as it may have no significant change
as described in section 1.1 or it may have an
acceptable increase as packets of other transfers
are given priority or the response tine may decrease
iIf in the case wthout nodules there was a overfl ow

in the queue (software queue) and now with the

- 49 -



nodul e inserted the packets are distributed better
anong the queues and no | oss of packets is seen. The

results were seen using the TCPDUMP utility.

Chekov Erwin

TCPDUMP 1S ON in this

System where the
system

MODULE iS INSERTED

Marconi

Fig. 6 Topology of the Internet Laboratory (Machines we are
concerned with)

-50 -



To nmake testing possible (as the LAN speed in the
LAB is very high) the nodule is changed as foll ows
Packets are inserted into g0 as long as the total
nunber of bytes seen from a flow is less than
5,000, 000 bytes. Packets are inserted in gl if nore
than 5, 000,000 bytes but |ess than 30,000,000 bytes
of a flow are seen. |If nore than 30,000, 000 bytes of
a flow are seen, packets of that flow are inserted
in g2. Wth the nodule changed as above the file
sizes were carefully chosen for the test, alnost all
packets of file f1 wll be in qO, alnost all packets
of file f2 wll be in g0 and gl (close to the
maxi mum perm ssible in each queue) and file f3 is
the only one that will have the maxi mum perm ssible
nunber of packets (bytes) in g0, ql and a lot of
packets Q2.

TCPDUWP is started at Marconi, it is a router in
this connection and does not have any other |oad
than forwardi ng packets so it can handle the extra
work of recording all the packets wthout nuch

del ay.

_51] -



The results of the transfer of files f1, f2 and f3

wi thout the nodule inserted is as foll ows

1 2.554343 11.311439 23.113718
2 2.216865 11.931338 23.002878
3 3.134354 12.892016 22.586394

Table 3: Time in seconds (micro seconds accurate) for the transfer of
files F1, F2 and F3 from Chekov to Marconi. Three trials
are taken for better precision.

The results of the transfer with the nodule inserted

at Chekov are as shown in the tabl e bel ow

1 2.056640 11.345540 22.049724
2 2.041893 10.944714 21.556246
3 2.359610 12.110914 22.199290

Table 4: Time in seconds (micro seconds accurate) for the transfer of
files F1, F2 and F3 from Chekov to Marconi (with Module
inserted). Three trials are taken for better precision.

_50.



Transfer Time of Files (F1,F2, F3) - Trial 1

; *

)

5 10
Time (S)

15 20 25

m Series2
O Series

Series 1. Time Taken to Transfer the File with Mdul e Inserted.

Series 2. Time Taken to Transfer the File without the Mdul e Inserted.

Transfer Time of File

s (F1,F2, F3)-Trial 2

; *

' .

5 10
Time (S)

15 20 25

W Series2
0 Series

Series 1: Tinme Taken to Transfer the File with Mdul e Inserted.

Series 2: Time Taken to Transfer the File without the Mdul e Inserted.

-53-




Transfer Time of Files (F1,F2,F3)-Trial 3

) A m Series?
O Series

0 5 10 15 20 25
Time (S)

Series 1. Time Taken to Transfer the File with Mdul e Inserted.

Series 2: Time Taken to Transfer the File w thout the Mdul e Inserted.

The follow ng table gives the average tinme taken for

the transfer of the files F1, F2 and F3

S.No Fie F1 Fie F2 Fie F3
WitHour MoDULE
1 |2.635187 [ 12.044931 | 22.900997
WitH MobuULE
2 [2.152714 | 11.467056 | 21.935087

Table 5: Average Time for the file transfers

_54 -




Transfer Time of Files (F1,F2,F3)- Average

) A u Series2
O Series

0 5 10 15 20 25
Time (S)

Series 1. Time Taken to Transfer the File with Mdul e Inserted.

Series 2: Time Taken to Transfer the File w thout the Mdul e Inserted.

Wth the average tines as shown above it is clear
that we have an inprovenent in the response tine for
the small file with also the response tine for the
other requests inproving by a snmall amount. The
percentage upgrade in the response tinme for the

three files are as foll ows

Difference in the time taken
for the transfer
% Upgrade in the (with & without the module)
Response time for F1

Il
1
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
*
—_
S
S

Time taken for the transfer
without the module

- (2.635187 — 2.152714)
(2.635187)

= 18.31 %

-55-



The cal cul ati on above proves shows that the response
time for the file F1 has inproved by 18.31 %
Simlarly the inprovenent in the response tinme for

files F2 and F3 can be cal cul at ed

9% Upgrade in the

Response time for F2 = 4.80 %
% Upgrade in the
Response time for F3 = 4.22 %

The total bandwidth utilization in both the cases is
descri bed bel ow

Bandwi dth utilization w thout the nodule

F1 is of size 5756923 Bytes => 46055384 bits

It was transferred in 2.635187 Seconds

Thus the transfer speed in this case is

46055384 (bits)

2.635187 (Seconds)

17. 48 Mops

- 56 -



F2 is of size 31898736 Bytes => 255189888 bits

It was transferred in 12.044931 Seconds

Thus the transfer speed in this case is

255189888 (bits)

12. 044931 (seconds)

21. 19 Mops

F3 is of size 79532032 Bytes => 636256256 bits
It was transferred in 22.900997 Seconds
Thus the transfer speed in this case is

= 636256256  (bits)

22. 900997 (seconds)

= 27.78 Mops

Bandwi dth utilization with the nodule inserted in
the Linux kernel is as follows

F1 was transferred in 2.152714 seconds (w th nodul e)
Therefore the transfer speed when calculated as

above is 21.39 Mops

-57 -



F2 was transferred in 11.467056 seconds
nodul e) . Therefore t he transfer speed

cal cul ated as above is 22.25 Mops

F3 was transferred in 21.935087 seconds

nodul e) . Therefore t he transfer speed

cal cul ated as above is 29.01 Mops

- 58 -

(with

when

(with

when



Banow pte Catcuation (1N Detar

Tra 1
F3
< >
< = >
< —>
T T - BB L
K< > <—>
€ $3 < > $5
S2 S4
Number of Bytes Sent Time Elapsed Bandwidth Utilized
S1 - 1601248 Bytes S1-0.308665 S S1-41.50 Mbps
S2 - 2600576 Bytes S$2-0.310337 S S2 - 67.04 Mbps
S3 — 17544840 Bytes S3 -2.552042 S S3 —55.00 Mbps
S4 - 45918976 Bytes S4 - 8.445657 S S4 — 43.50 Mbps
S5 - 51060624 Bytes S5-11.494316 S S5 —35.54 Mbps

Total number of Bytes Sent = 118726264 Bytes => (949810112 bits)
Total Elapsed Time in Seconds = 23.111017 Seconds

Average Bandwidth Utilized = 41.10 Mbps

Fig. 7 Start and Stop Times of the File Transfers.
Number of bytes transferred in each interval.

-59 -



During S1 only F3 is sent on the Link so Bandw dth
utilized is 41.50 Mops

During S2, F3 and F2 are sent on the Link so
Bandwi dth utilized is as follows

F3 — 34.00 Mops

F2 — 33.04 Mops

During S3, F3, F2 and F1 are sent on the Link so
Bandwi dth utilized is as follows

F3 — 13.71 Mops

F2 — 22.81 Mops

F1 — 18.47 Nops

During $S4, F3 and F2 are sent on the Link so
Bandwi dth utilized is as follows

F3 — 20.87 Mops

F2 — 22.62 Mops

During S5 only F3 is sent on the Link so Bandw dth

utilized is 35.54 Mops

- 60 -



F3

F2

Fl1

Number of Bytes Sent

Time Elapsed

S4

Bandwidth Utilised

S1-949496 Bytes
S2 — 2473072 Bytes
S3 - 14505248 Bytes
S4 - 54013336 Bytes
S5 - 46761408 Bytes

S1-0.285565 S
52 -0.320414 S
S3-2.214523 S
S4 -9.393935 S
S5-10.786093 S

S1-26.50 Mbps
S2 - 61.77 Mbps
S3 —52.40 Mbps
S4 — 46.00 Mbps
S5 —34.68 Mbps

Average Bandwidth Utilized = 41.29 Mbps

Total number of Bytes Sent = 118702560 Bytes

=> (949620480 bits)

Total Elapsed Time in Seconds = 23.000530 Seconds

Fig. 9 Start and Stop Times of the File Transfers.
Number of bytes transferred in each interval.

_61 -



During S1 only F3 is sent on the Link so Bandw dth
utilized is 26.60 Mops

During S2, F3 and F2 are sent on the Link so
Bandwi dth utilized is as follows

F3 — 23.98 Mops

F2 — 37.79 Mops

During S3, F3, F2 and F1 are sent on the Link so
Bandwi dth utilized is as follows

F3 — 20.53 Mops

F2 — 10.73 Nops

F1 — 21.14 Nbps

During $S4, F3 and F2 are sent on the Link so
Bandwi dth utilized is as follows

F3 — 22.19 Mops

F2 — 23.81 Mops

During S5 only F3 is sent on the Link so Bandw dth

utilized is 34.68 Mops

_62 -



F3

F2

Fl

Number of Bytes Sent

S4

Time Elapsed

Bandwidth Utilised

S1-2191184 Bytes
S2 — 1520416 Bytes
S3 - 19068928 Bytes
S4 — 53607856 Bytes
S5 — 42452232 Bytes

S1-0.342334 S
S2-0.287178 S
S3-3.132024 S
5S4 -9.470204 S
S5-9.352405 S

S1-51.21 Mbps
S2 —42.35 Mbps
S3 —48.71 Mbps
S4 — 45.29 Mbps
S5 -36.31 Mbps

Total number of Bytes Sent = 118840616 Bytes
Total Elapsed Time in Seconds = 22.584149 Seconds
Average Bandwidth Utilized = 42.10 Mbps

=> (950724928 bits)

Fig. 10 Start and Stop Times of the File Transfers.
Number of bytes transferred in each interval.

-63 -



During S1 only F3 is sent on the Link so Bandw dth
utilized is 51.21 Mops

During S2, F3 and F2 are sent on the Link so
Bandwi dth utilized is as follows

F3 — 21.09 Mops

F2 — 21.26 Mops

During S3, F3, F2 and F1 are sent on the Link so
Bandwi dth utilized is as follows

F3 — 20. 15 Mops

F2 — 13.50 Mops

F1 — 15.06 Mops

During $S4, F3 and F2 are sent on the Link so
Bandwi dth utilized is as follows

F3 — 22.94 Nops

F2 — 22.35 Mops

During S5 only F3 is sent on the Link so Bandw dth

utilized is 36.31 Mps

_64 -



< = >
< = >
< —_—

S4

Number of Bytes Sent Time Elapsed Bandwidth Utilised
S1-1950760 Bytes S1-0.266991 S S1 - 58.45 Mbps
S2 - 2646248 Bytes S2-0.244770 S S2 — 66.88 Mbps
S3 - 15620280 Bytes S$3-2.055328 S S3 - 60.80 Mbps
S4 - 53019968 Bytes S4-9.043214 S S4 —46.90 Mbps
S5 — 46057984 Bytes S5-10.437152 S S5 —35.30 Mbps

Total number of Bytes Sent = 118695240 Bytes => (949561920 bits)
Total Elapsed Time in Seconds = 22.047455 Seconds

Average Bandwidth Utilized = 43.07 Mbps

Fig. 11 Start and Stop Times of the File Transfers.
Number of bytes transferred in each interval.

-65 -



During S1 only F3 is sent on the Link so Bandw dth
utilized is 58.45 Mops

During S2, F3 and F2 are sent on the Link so
Bandwi dth utilized is as follows

F3 — 28.63 Mops

F2 — 38.25 Mops

During S3, F3, F2 and F1 are sent on the Link so
Bandwi dth utilized is as follows

F3 — 17.66 Mops

F2 — 20.34 Mops

F1 — 22.80 Mops

During $S4, F3 and F2 are sent on the Link so
Bandwi dth utilized is as follows

F3 — 23.87 Mops

F2 — 23.04 Mops

During S5 only F3 is sent on the Link so Bandw dth

utilized is 35.30 Mps

- 66 -



F3

F2

F1

Number of Bytes Sent

S4

Time Elapsed

Bandwidth Utilised

S1 - 1662744 Bytes
S2 — 1718568 Bytes
S3 — 15452032 Bytes
S4 — 53421064 Bytes
S5 — 46411528 Bytes

S1-0.341395 S
52 -0.283206 S
S3-2.039847 S
S4 - 8.618819 S
S5 -10.270640 S

S1 -38.96 Mbps
S2 —48.55 Mbps
S3 - 60.60 Mbps
S4 —49.59 Mbps
S5 —36.15 Mbps

Total number of Bytes Sent = 118665936 Bytes

Average Bandwidth Utilized = 44.04565 Mbps

=> (949327488 bits)
Total Elapsed Time in Seconds = 21.553907 Seconds

Fig. 12 Start and Stop Times of the File Transfers.
Number of bytes transferred in each interval.

-67 -




During S1 only F3 is sent on the Link so Bandw dth
utilized is 38.96 Mops

During S2, F3 and F2 are sent on the Link so
Bandwi dth utilized is as follows

F3 — 10. 30 Mops

F2 — 38.25 Mops

During S3, F3, F2 and F1 are sent on the Link so
Bandwi dth utilized is as follows

F3 — 16. 24 NMops

F2 — 21.30 Mops

F1 — 23.07 Mops

During $S4, F3 and F2 are sent on the Link so
Bandwi dth utilized is as follows

F3 — 25.79 Mops

F2 — 23.80 Mops

During S5 only F3 is sent on the Link so Bandw dth

utilized is 36.15 Mops

- 68 -



F3

F2

F1

Number of Bytes Sent

S4

Time Elapsed

Bandwidth Utilised

S1 —2223240 Bytes
S2 — 974080 Bytes
S3 - 15207592 Bytes
S4 — 55814420 Bytes
S5 — 44373424 Bytes

S1-0.305535 S
52 -0.281557 S
S3-2.357509 S
54 -9.469518 S
S5 -10.369299 S

S1-58.21 Mbps
S2 —27.68 Mbps
S3 - 51.61 Mbps
S4 —47.15 Mbps
S5 —34.23 Mbps

Total number of Bytes Sent = 118591656 Bytes

Average Bandwidth Utilized = 41.64 Mbps

=> (948733248 bits)
Total Elapsed Time in Seconds = 22.783418 Seconds

Fig. 14 Start and Stop Times of the File Transfers.
Number of bytes transferred in each interval.

- 69 -




During S1 only F3 is sent on the Link so Bandw dth
utilized is 58.21 Mops

During S2, F3 and F2 are sent on the Link so
Bandwi dth utilized is as follows

F3 — 25.41 Mops

F2 — 2.27 Mops

During S3, F3, F2 and F1 are sent on the Link so
Bandwi dth utilized is as follows

F3 — 16. 34 Mops

F2 — 15.27 Nops

F1 — 20.00 Mops

During $S4, F3 and F2 are sent on the Link so
Bandwi dth utilized is as follows

F3 — 23.62 Mops

F2 — 23.53 Mops

During S5 only F3 is sent on the Link so Bandw dth

utilized is 34.23 Mops

The results show that the link is not overl oaded and
to observe better results the system needs to be

over| oaded.

-70 -



A surprising finding was that the tine to transport
a file inproved (with the nodule inserted in the
kernel) for all the three files (small, nedium and
large). It was expected that the tinme woul d decrease
considerably for the small files, and if the tine
Increased in case of the large file would be by a
smal |l anount. The reason for the counter intuitive
result may be related to the fact that even while
the three file transfers were in progress
si mul taneously, the link utilization was only about
55 — 60% This, together with the 7cr feed back may
have caused the uniform i nprovenent.

Anot her reason for an inproved transfer tinme in all
the three files nay be attributed to the fact that
there are fewer drops (with the nodule inserted) at
the software queue associated with a network device
when conpared to the case when the nodule is not
inserted. This is because packets are inserted in
all the three queues (software queues) instead of
being inserted only in one queue.

This point can be investigated in future projects.

-71 -



7 Furure | MPROVEMENTS

The future prospects of this project are to take
into consideration the type of flows. If there are
well known port nunbers Ilike telnet (23), FTP
control channel (21) we may want to create nodes in
the front end of the linked list. These ports create
a lot of packets but each with very little data. So
instead of wasting tinme traversing the linked Iist
at the hook, if we had nodes corresponding to these
port nunbers at the front of the linked list it
woul d save tinme. Another alternative could be to
al ways put the packets fromthese ports (FTP control
or telnet) in g0 as they may have inportant
information. It also saves the tinme at the hook, as
the conputation is reduced. W can also change the
scheduling nechanism and increase the nunber of
queues (9 instead of 3), thus we can get really fine
in segregating the response, but at the cost of
addi ti onal computation invol ved.

One nore feature that can be added is to put all wor
packets in g0, the queue with the highest priority,

as real tinme traffic may be sent using uwe packets

-72 -



and giving high priority to these packets is

desi rabl e.

-73 -



8 ProBLEMs ENCOUNTERED

The system crashes in the scenario described bel ow
A ping from system 1 to system 2 (wth the nodul e

inserted in system 1) using options like “-i’, ‘-f’,

‘-s’ nade the system vul nerabl e.

The syntax of the ping conmmand is given bel ow

ping —s 14720 -i 0.01 marconi (from hawki ng) or

ping —s 14729 —f marconi (from hawki ng)

(bservation: The system worked nornmally for sone

time and then crashed. The anount of tinme for which

the system worked was not the sanme in all trials.

-74 -



o

ReFERENCES

Bansal, N. and Harchol -Balter, M 2001. Analysis
of SRPT Scheduling: Investigating unfairness. In

Proceedi ngs of ACM SI GVETRI CS '’ 01.

. DO Code - conprehensively cross — referenced and

sear chabl e code

http://ww-dO. fnal . gov/ DOCode/ sour ce

Pwrack . .. a Hacker magazi ne by the community, for

the community...

http://ww. phrack. org

Tutorial on Kernel Reconpilation

http://web.njit.edu/~ott

. Behrouz A. Forouzan, 2003, TCP/IP Protocol Suite,

M Gaw H I].

The “Networ ki ng” code in Linux, Teunis J. ott and
Rahul Jain July 29, 2004.

A Map of the Networking Code in Linux Kerne

2.4.20 by MR o et al. 31 March 2004.

-75 -



1 ApPENDI X
Sonme of the commands and their options |earnt during
the project are:

1. Ping and sone of its options are descri bed bel ow
Ping Marconi

This sends ping packets with an interval of 1 second
bet ween successive packets. The size of the ping
packet is 64 bytes (56 + 8 due to | CWP).

Ping —s 14720 Marconi

This option ‘-s’, is used to specify the size (in
bytes) of the ping packet. 8 bytes due to ICVMP are
added to the specified size. If the size specified
is less than 8 bytes then the tine option is not

i ncluded in the ping packet.

Ping -1 0.01 Marconi

This option ‘-i’, is used to specify the interval
bet ween successive ping packets. The interval
specified is in seconds.

Ping —f Marconi

This option is used to flood the link with ping
packets. Wen this option is used ping places a dot

‘.” On the screen for every packet transmtted and

takes of a dot for every packet received.

-76 -



2. mi-tool and the option used with it is described
bel ow:

This utility is used to set the status of a network
devi ce.

mii-tool

This comand prints all the devices and their
st at us.

The speed of the device can be changed with the
foll ow ng command

mii-tool —F 10baseT-FD

The above command forces the device to work at
10Mops.

mii-tool —F 100baseTx-FD

The above command forces the device to work at

100Mbps.

=77 -



