
SHORTEST REMAINING FILE FIRST SCHEDULING

ON REDHAT LINUX 9

Submitted to the

Department of Computer Science

College of Computing Sciences

New Jersey Institute of Technology

in partial fulfillment of

the requirements of the degree of

Master of Science

By

Mihir C Patel

­ 1 ­

APPROVALS

Proposal Number: __________________________

Approved By : __________________________

(Dr. Teunis J. Ott)

Date Submitted : __________________________

­ 2 ­

ABSTRACT

In today’s world a client accessing a busy web server can expect a large

response time. In this project response time is defined as the time from when

the client sends out the SYN­packet requesting to open a connection until the

client receives the last byte of the file requested. This project proposes a

method for improving the performance of web servers. The idea is to give

preference to requests for small files. The implementation is done in the linux

kernel (redhat 9) and involves changing the way in which packets are

enqueued in a network device’s queue. The shortest remaining file first (SRFF)

scheduling technique, defined later, gives priority to requests for short files, or

those requests with short remaining file size. Now it is clear that this kind of

scheduling reduces the waiting time in the queue, in particular the requests for

small files. Preempting long requests for short request is desirable because

forcing long requests to wait behind shorter ones results in a much lower mean

response time than the situation where short requests wait behind longer ones.

The key to this project is placing packets in the device queue. In this project

we assign priority to a packet depending on the number of bytes sent by that

flow (the current packet’s flow). Thus a small request behind a large one does

not waste time waiting in the queue.

This project uses network sniffing software, Tcpdump, for testing purpose.

­ 3 ­

TABLE OF CONTENTS

1. INTRODUCTION

1.1 PROBLEM STATEMENT (6)

1.2 PREVIOUS WORK (12)

1.3 GLOSSORY (13)

2. DESIGN

2.1 KERNEL RECOMPILATION APPROACH (15)

2.1.1 STEPS FOR KERNEL RECOMPILATION (16)

2.2 LOADABLE KERNEL MODULE APPROACH (18)

2.3 DECIDING FACTOR FOR AN APPROACH (19)

2.4 DESCRIPTION OF THE VARIOUS NETFILTER HOOKS (20)

2.5 CHOOSING THE HOOK (24)

3. BACKGROUND

3.1 DESCRIPTION OF DEVICE ACTIVATION AND FUCNTIONS USED (27)

4. ALGORITHM

4.1 ALGORITHM FOR THIS PROJECT (31)

5. IMPLEMENTATION

5.1 CODE (34)

5.2 EXPLANATION OF THE CODE (39)

6. TESTS AND RESULTS (49)

7. FUTURE IMPROVEMENTS (72)

8. PROBLEMS ENCOUNTERED (74)

­ 4 ­

9. REFERENCES (75)

I. APPENDIX (76)

­ 5 ­

1 INTRODUCTION

1.1 PROBLEM STATEMENT

The project is an attempt to improve the response

time offered (in certain cases) by a server. Since

there are multiple clients requesting data from a

server, the server has a predefined mechanism for

the order in which it serves these requests. The

response to these requests is sent in fixed size

packets, so depending on the request, it may be

served in a single packet or in multiple packets.

Once the packets are ready to be sent out they are

given to the device driver. The device driver then

transmits the packet on the wire. Since multiple

requests are served simultaneously at a server the

speed at which packets are generated and given to

the device may be faster than the speed at which a

device can actually send these packets on the wire.

So a queue is associated with a device where these

packets are put in before they hit the wire. The

device then grabs packets from this queue at its own

pace and sends it out on the wire.

­ 6 ­

Linux in its default state has three queues for

every network device. The three queues, namely q0,

q1 and q2 have priorities between them. q0 has the

highest priority followed by q1 and then q2. Packets

are always drained from q0 first, if q0 is empty

packets are removed from q1 and if both q0 and q1

are empty packets are removed from q2. All the

queues have the same maximum permissible length (100

packets in case of Ethernet). Each queue internally

has FIFO within it. In this project we assign a

value to the priority field of a packet depending on

which queue the packet needs to be inserted. The

first few packets of a flow are inserted in q0, the

queue with the highest priority. When the number of

packets of a flow cross a set limit, say x1, they

are inserted into q1, the queue with lesser priority

than q0. When the number of packets of a flow

crosses another limit, say x2 where x2 > x1, further

packets of this flow are inserted in q2, the queue

with the least priority. By doing so we guarantee

that a small flow behind a big one does not suffer a

long wait time in the queue. An example is as

described below.

­ 7 ­

Consider that a server has two requests. Request one

came first and is a request for a large file.

Request two comes after and is a request for a small

file. By default packets are filled as follows

By filling the device queue as shown above, packets

due to request 1 start filling the queue first and

by the time packets due to request two are to be

inserted, the queue is filled to a good extent and

as the queues follow FIFO discipline the packets of

request 2 are inserted at the tail end of the queue.

This increases the waiting time for packets of

­ 8 ­

 Q2 Q1 Q0

1
2
2
1
1
1
1
1
1
1

Fig. 1 Device queue with packets in it.

1 – packets due to request 1

2 – packets due to request 2

request 2 in the queue. Numerically analyzing the

situation, let request 1 generate 50 packets and

request 2 generate 2 packets. Now, request 1 as it

came first has generated packets and starts filling

the queue. By the time request 2 generates packets

and has them ready to be inserted in the queue, the

queue already has about 35 packets due to request 1.

Now the two packets due to request two are inserted

in location 36 and 37 in the queue. Thus a request

that can be served in 2 packets has to wait for the

35 packets in front of it to be served. This adds to

the response time of request 2. So instead of

filling the queue as shown above if we give

priorities to flows depending on the number of

packets it generates, we can reduce this waiting

time.

The same situation above would be handled by this

project as follows

­ 9 ­

This project keeps track of all active flows and

maintains a counter for the number of bytes sent by

each flow. For example, the first few packets (say

up to 1500 bytes) of a flow are inserted into q0,

the next few packets (say up to 5000 bytes) of a

flow are inserted into q1 and all other packets are

inserted into q2. The numbers given above are

flexible and we can set them depending up on how we

want to classify a small, medium or big flow. In the

example in section 6, we classify a file with less

than 5,000,000 bytes as a small file. A file with

­ 10 ­

 Q2 Q1 Q0

2
2
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

Fig. 2 Device queue with packets in it.

1 – packets due to request 1

2 – packets due to request 2

more than 5,000,000 bytes but less than 30,000,000

bytes as a medium size file and a file with more

than 30,000,000 bytes as a large file. So in the

case as above(with limits 1500 and 5000 bytes for

small and medium files respectively) the first 5

packets due to request 1 are inserted into q0 and

the subsequent packets due to request 1 are inserted

and into q1. After 15 packets have been inserted in

q1 the rest of the packets due to request 1 are

inserted into q2. Thus when packets due to request 2

have their turn to be inserted in the queue, they

are inserted in q0. By doing this the wait time for

packets in the queue reduces, thus improving the

response time.

Analyzing the response time of the requests in both

cases (with and without module) we have the

following:

In the default linux mode request 1 would have been

completely served in the time it takes the system to

serve 52 packets (50 packets of request 1 and 2

packets of request 2). This is because the two

packets of request 2 are in between the 50 packets

of request 1. The response time for request 2 will

­ 11 ­

be the time it takes to serve 37 packets, as packets

of request 2 are inserted in location 36 and 37 in

the queue.

In the case that this project handles the situation,

the response time for request 1 would be the same,

(the time it takes the system to serve 52 packets).

The response time for request 2 would greatly be

improved as now it is the time it takes the system

to serve 7 packets (5 packet of request 1 and then

the 2 packets of request 2). Thus we see a

significant improvement in the response time of

certain request(s) at no or negligible expense on

other requests.

1.2 PREVIOUS WORK

Many papers have dealt with reducing the response

time for requests at a web server. A lot of these

papers deal with SRPT scheduling, which involves

knowing the size of the response before hand. The

most relevant of the papers is one by Mor Harchol

Balter and Nikhil Bansal. Their work was to bring

srff behavior in web servers. The length of the

transfer in this case was available as it was a http

­ 12 ­

based system. A paper by Bender, Chakrabarti and S.

Muthukrishnan reject this idea of using SRPT

scheduling because large files have an arbitrarily

high maximum slowdown. The idea by Crovella et al is

about connection scheduling at the application level

only. This controls the order in which read and

write calls are made. This does not incorporate any

low level scheduling. This improves the mean

response time but reduces the server throughput.

1.3 GLOSSARY

IP : Internet Protocol

TCP : Transmission Control Protocol

UDP : User Datagram Protocol

ICMP : Internet Control Message Protocol

ARP : Address Resolution Protocol

Pfifo : Priority FIFO

netdev : Network Device

dev : Device

dflt : Default

ops : Operations

mtu : Maximum Transfer Unit

init : Initialize

­ 13 ­

srff : Shortest Remaining File First

srpt : Shortest Remaining Processing Time

q : Queue

lilo : Linux Loader

Grub : Grand Unified Bootloader

B : Bytes (8 bits)

MB : Mega Bytes (8 * 10^6 bits)

Mbps : Mega bits per second

­ 14 ­

2 DESIGN

There are two approaches for implementing this

scheme

1. Embed the software in the kernel, involves kernel

recompilation.

2. Insert the software as a loadable kernel module.

A detailed description of the possible approaches is

as follows

2.1 KERNEL RECOMPILATION APPROACH

In the kernel recompilation method we have to

add/change the file(s) in the linux kernel. This

involves finding a place where inserting these

changes would be plausible. We have to make sure

that the function(s) we insert are called in all

cases. Thus we also need to change the sequence of

function calls made, while preserving the calls that

linux would make otherwise. Once the right place to

insert the function is figured out, the function is

inserted and the sequence of function calls are set

we need to recompile the kernel. Recompiling the

kernel involves a series of steps (described below).

A successful recompilation forms a new image of the

kernel. In order for the effects of this new kernel

­ 15 ­

to be shown we need to reboot the system, selecting

the new image we created in the list shown during

start up.

2.1.1 STEPS FOR RECOMPILING THE KERNEL

First make copies of all files that we plan to

modify. Make a log file where all the work is

documented (i.e, the files that are being modified

and where copies of the original files are saved and

other important things, if any). Now make necessary

changes in the files (‘.c’ and/or ‘.h’) and save

them. Also document the changes that have been made.

The next step before recompiling the kernel is to

check if there is enough space to have a new image

of the kernel. The space utilized can be got using

the ‘df’ command. It is a safe idea to have a new

image of the kernel after recompilation and not

overwrite the default linux image because if for

some reason the new kernel fails we have the option

to boot from the default linux image. A new image

can be formed by changing the Makefile in /

usr/src/linux-2.4/. Change the line starting with

­ 16 ­

‘#extraversion’. Save the Makefile and do the

following steps to get a new image of the kernel.

make mrproper

make menuconfig

 (This will give you a GUI with parameters to be

set.)

make dep

make bzImage

make modules

 (This one takes long!)

make modules_install

make install

cd /etc

 (Moves you to the directory /etc)

more lilo.conf

 (Check the new kernel is listed there!)

reboot

(This reboots the system. When given the choice,

choose the new kernel image).

­ 17 ­

2.2 LOADABLE KERNEL MODULE APPROACH

This approach makes use of the netfilter hooks in

the linux kernel. Hooks are places in the linux

kernel where user defined functions can be inserted.

There are multiple hooks in the linux kernel, so

first we have to decide which hook we are interested

in. We then write our function and store it in a

‘.c’ file, eg. My_module.c. The file in addition to

our function has other functions that help in

registering it at the hook. Now together we call

this file a module. We then need to compile the

module to make it useable. Compiling is done by

either writing a command at the prompt or by a

‘Makefile’ (explained in section 5.2). This project

uses the makefile option. A makefile is written that

has the command to compile the file ‘My_module.c’ to

give the executable ‘My_module.o’. This makes

compilation easy, as now it is as simple as

executing the makefile. This is done by the command

‘make’. Now after using the ‘make’ command we have

the executable for our module, and now we need to

insert it into the kernel. Installing this module is

done using the command ‘insmod My_module.o’. Now

­ 18 ­

that the module is inserted we can see the changes

in the behavior of the system. To stop the effects

of the module we need to remove it from the hook.

This is done using the command ‘rmmod My_module’.

This unregisters the module from the hook and thus

the effects of this module are no more seen in the

system. Any print messages used in the module can be

seen in the log file at /var/log/messages. Thus when

a module is inserted, it registers itself at the

hook and when the functions at the hook are called

the effect of our function is seen.

2.3 DECIDING FACTOR FOR AN APPROACH

In the kernel recompilation method, for every change

we make we have to recompile the kernel to see its

effect. Kernel recompilation as described earlier is

a lengthy process. After the recompilation we also

need a reboot of the system as we have to be in the

newly created image to observe the changes. The new

image formed by the kernel recompilation is an image

of the whole linux kernel, thus is pretty huge in

terms of disk space. It is not efficient to have a

new image in order to observe a small change in the

­ 19 ­

system when alternatives are available. Thus this

approach is expensive in terms of time and resource

(disk space).

In the option using netfilter hooks we see the

effect of the changes in matter of seconds.

Compiling only one file (in this case My_module.c)

and registering it with the hook. It does not take a

long time like kernel recompilation, does not

require a reboot of the system and also takes up

less disk space. Using the module approach also

makes the software portable as we can copy the

executable and insert it in a different machine,

with out any reboot of the new machine. Another

advantage of the module approach is that the module

can be unregistered from the hook at any time. The

kernel recompilation method would need a reboot to a

different image. Thus this project uses the

netfilter approach.

2.4 DESCRIPTION OF THE VARIOUS NETFILTER HOOKS

Netfilter is a subsystem in the Linux Kernel.

Netfilter makes such network tricks as packet

filtering, network address translation (NAT) and

­ 20 ­

connection tracking possible through the use of

various hooks in the kernel’s network code. These

hooks are places that kernel code, either statically

built or in the form of loadable module, can

register functions to be called for specific network

events. An example of such an event is the

transmission of a packet.

Netfilter defines five hooks for IPv4. The

declaration of the symbols for these can be found in

linux/netfilter_ipv4.h. The name of these hooks and

a brief description is given below:

S.NO HOOK CALLED

1 NF_IP_PRE_ROUTING After sanity checks, before routing
decisions.

2 NF_IP_LOCAL_IN After routing decisions if packet
is for this host.

3 NF_IP_FORWARD If the packet is destined for
another interface.

4 NF_IP_LOCAL_OUT For packets coming from local
processes on their way out.

5 NF_IP_POST_ROUTIN

G

Just before outbound packets "hit
the wire".

After the hook functions have done whatever

processing they need to do with a packet they must

­ 21 ­

Table 1: Names and location of the 5 IPv4 hooks

return one of the predefined Netfilter return codes.

The codes are as follows:

S.NO RETURN CODE MEANING

1 NF_DROP Discard the packet.
2 NF_ACCEPT Keep the packet.
3 NF_STOLEN Forget about the packet.
4 NF_QUEUE Queue packet for user space.
5 NF_REPEAT Call this hook function again.

­ 22 ­

Table 2: Netfilter Return Codes

­ 23 ­

Fig. 3 Various Functions and Hooks in the Linux Network Layer data path.

2.5 CHOOSING THE HOOK

When the packet reaches the host from the network,

it goes through the network layer functions and when

it reaches net_rx_action(), it is passed to ip_rcv()

i.e. it reaches ip layer. After passing the first

netfilter hook the packet reaches ip_rcv_finish(),

which verifies whether the packet is for local

delivery. If it is addressed to this host, the

packet is given to ip_local_delivery(), which in

turn will give it to the appropriate transport layer

function. A packet can also reach the IP layer

coming from the upper layers (e.g., delivered by

TCP, or UDP, or coming directly to the IP layer from

some applications).The first function to process the

packet is then ip_queue_xmit(), which passes the

packet to the output part through ip_output(). In

the output part, the last changes to the packet are

made in ip_finish_output() and the function

dev_queue_transmit() is called; the latter enqueues

the packet in the output queue. It also tries to run

the network scheduler mechanism by calling qdisc_run

(). This pointer will point to different functions,

depending on the scheduler installed. A FIFO

­ 24 ­

scheduler is installed by default. The scheduling

functions (qdisc_restart() and dev_queue_xmit_init

()) are independent of the rest of the IP code. When

the output queue is full, q->enqueue returns an

error which is propagated upward on the IP stack.

This error is further propagated to the transport

layer (TCP or UDP). If an incoming packet has a

destination IP address other than that of the host,

the latter acts as a router (a frequent scenario in

small networks). If the host is configured to

execute forwarding (this can be seen and set via /

proc/sys/net/ipv4/ip_forward), it then has to be

processed by a set of complex but very efficient

functions. If the ip_forward variable is set to

zero, it is not forwarded. The route is calculated

by calling ip_route_input(), which (if a fast hash

does not exist) calls ip_route_input_slow(). The

ip_route_input_slow() function calls the FIB

(Forward Information Base) set of functions in the

fib*.c files. The FIB structure is quite complex. If

the packet is a multicast packet, the function that

calculates the set of devices to transmit the packet

to is ip_route_input_mc(). In this case, the IP

­ 25 ­

destination is unchanged. After the route is

calculated, ip_rcv_finished() inserts the new IP

destination in the IP packet and the output device

in the sk_buff structure. The packet is then passed

to the forwarding functions (ip_forward() and

ip_forward_finish()) which send it to the output

components.

With the flow of a packet in the network layer being

as described above, the place suitable for inserting

our module is NF_IP_POST_ROUTING hook. This is the last

hook in the network layer, and it is only by this

time that the packet has in it all the header

information necessary to calculate the priority of

the packet. If the system is a router instead of a

server, then our module needs to be inserted at

NF_IP_FORWARD.

­ 26 ­

3 BACKGROUND

3.1 DESCRIPTION OF DEVICE ACTIVATION AND FUCNTIONS USED

When a device is initialized in linux, queue(s) are

created and associated with the device. These queue

(s) behave according to a certain discipline. The

linux kernel has in it many such disciplines that a

queue can take. So, when a device is activated a

decision is made as to which discipline would be

assigned to the queue(s) of this device. Assigning a

discipline to a queue is done by giving meaning to

the function pointers that do operations on the

queue. There are a handful of such pointers that

operate on a queue, for example ‘init()’, ‘enqueue

()’, ‘dequeue()’ and a few more. These pointers are

called to do operations on the queue. So by having

‘init()’ point at the ‘init’ function of the desired

discipline, we can have the queue for a device

initialized according to that discipline. Similarly

by pointing ‘enqueue()’, ‘dequeue()’ and the rest of

the function pointers to the appropriate functions

of a discipline we have the queue behave according

to the discipline. A series of functions are called

during the activation of a device. The first

­ 27 ­

function to be called is ‘dev_open()’. This function

calls the device’s private ‘open()’ function. It

also loads the multicast list and calls functions

that creates a device queue and give it a

discipline. It notifies the system about the change

in the state of the device. Calling the ‘dev_open()’

function on an active device is a noop and the

function on failure returns a negative error number.

A function call of interest here is the call to

‘dev_activate()’. This call is made after the device

is up, to create the device queue. By default the

functions assigned to the function pointers,

‘enqueue()’, ‘dequeue()’ and the others are

Enqueue - ‘pfifo_fast_enqueue’

Dequeue - ‘pfifo_fast_dequeue’

Requeue - ‘pfifo_fast_requeue’

Reset - ‘pfifo_fast_reset’

Init - ‘pfifo_fast_init’

The default mechanism in linux, pfifo, creates 3

queues and each queue intern has FIFO mechanism

within it. So the default mechanism is a combination

of priority and FIFO.

­ 28 ­

‘enqueue()’ inserts a packet into one of the three

queues depending on the priority field in the

packet. ‘dequeue()’ tries to remove a packets from

queue ‘q0’. If ‘q0’ is empty it tries to remove a

packet from ‘q1’ and when both ‘q0’ and ‘q1’ are

empty it tries to remove a packet from ‘q2’. The

­ 29 ­

Enqueue

 Q2 Q1 Q0

Dequeue

Device
Wire

Tx Ring in device

Fig.4 – shows the three queues and the relation of the enqueue, dequeue functions
with these queues. Also shows the path for a packet to the device and its internal
buffer/ring to the wire.

‘dequeue()’ function may be interrupted, and when it

returns the ‘dequeue()’ function starts again from

‘q0’, thus preference is given to ‘q0’. Packets

after being dequeued are given to the driver which

places them in the device’s internal transmit ring

and sends them out on the wire.

­ 30 ­

4 ALGORITHM

4.1 ALGORITHM FOR THIS PROJECT

This project assigns a priority for every packet

passing through the network layer. This priority

field determines into which queue the packet should

be inserted at the device layer (3 queues per

device). An outgoing packet flows through the

various network layers and it reaches the network

layer (layer 3) and the hook (NF_IP_POST_ROUTING) where

we have registered our module. All out going packets

that flow through the network layer pass through

this hook. By the time the packet reaches the hook

it has its network header ready with all the

variables given appropriate values. This module does

three major functions

1. keeps a record of the packet

2. creates and maintains a linked list of active

flows (flows that have at least one packet in

the device queue)

3. cleans the linked list at regular intervals

First the module checks for the transport layer

protocol of the packet. If the packet is a TCP

packet, then the source and destination port numbers

­ 31 ­

are got by looking into the transport layer header.

One complication that arises here is that, there is

no direct access to the transport layer headers from

the network layer. So in order to get the port

number we do pointer arithmetic (explained in

section 5.2) on the packet and reach out for the

port numbers. The rest of the details are obtained

form the network header itself and since our module

is at the network layer we have direct and complete

access to all the fields of the network layer. A

node is created that stores the source and

destination IP addresses, source and destination

port numbers, the transport layer protocol, the time

at which the packet arrived and number of data bytes

in the packet. These details are stored and a linked

list is formed for all the active flows in the

system. If a packet is the first packet of a flow

then a new node is created and inserted into the

linked list. Otherwise the node corresponding to the

packet details is searched and updated. The only

updates done are the number of bytes seen of that

flow and the last time a packet of that flow was

seen. Now that we have the number of bytes seen from

­ 32 ­

that flow, we can decide as to which queue the

packet should go into. For example, if the total

number of bytes seen of this flow is less than 1500

bytes then it is considered a high priority flow and

the packet should be inserted in to q0. If the

number of bytes seen of this flow is greater than

1500 bytes but less than 5000 bytes then the flow is

considered a moderate flow and the packets at this

time go into q1. If there are more than 5000 bytes

seen from this flow then it is a big flow and all

the rest of the packets of this flow go into q2.

Once this change is made in the packet it is sent

forward as it would go normally. One more task that

the module does is, the clean up of the linked list

created. This is done once every 2500 milliseconds.

A sequential traversal is done through the nodes in

the linked list and if a node has not had any update

in the last 2500 milliseconds then the node is

deleted assuming the flow has finished.

­ 33 ­

5 IMPLEMENTAION

5.1 CODE

#define MODULE

#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/skbuff.h>

#include <linux/ip.h>

#include <linux/netfilter.h>

#include <linux/netfilter_ipv4.h>

#include <net/ip.h>

// user defined data structure to store the active flow details

struct flows

{

__u16 sport,dport; // source and destination port numbers

__u32 saddr,daddr; // source and destination IP address

__u8 protocol; // Transport layer protocol name

__u32 num_of_bytes; // Total number of bytes sent by this flow

__u32 tolp; // Arrival time of the last packet of this flow

struct flows *next; // Pointer to the next node in the linked list

};

static struct flows *head = NULL;

static struct nf_hook_ops nfho;

// This is the hook function itself

unsigned int hook_func(unsigned int hooknum,

struct sk_buff **skb,

const struct net_device *in,

const struct net_device *out,

­ 34 ­

int (*okfn)(struct sk_buff *))

{

struct flows *cur_pack, *temp, *temp1;

cur_pack = (struct flows *) kmalloc(sizeof(struct flows), GFP_KERNEL);

struct sk_buff *sb = *skb;

static __u32 last_clear_table=0;

__u8 ip_hlen;

__u16 ip_tot_len;

cur_pack­>tolp = jiffies;

ip_hlen = (sb­>nh.iph­>ihl)*4;

ip_tot_len = ntohs(sb­>nh.iph­>tot_len);

if(sb­>nh.iph­>protocol == IPPROTO_TCP)

{

cur_pack­>saddr = sb­>nh.iph­>saddr;

cur_pack­>daddr = sb­>nh.iph­>daddr;

cur_pack­>sport = *(unsigned int *) (sb­>data + (sb­>nh.iph­>ihl * 4));

cur_pack­>dport = *(unsigned int *) ((sb­>data + (sb­>nh.iph­>ihl * 4)) + 2);

cur_pack­>protocol = sb­>nh.iph­>protocol;

cur_pack­>num_of_bytes = (ip_tot_len­ip_hlen);

cur_pack­>next = NULL;

// Checking to see if the last time the linked list was cleared is more than 2500

milliseconds ago, if so clear the linked list.

if((jiffies­last_clear_table)>250)

{

last_clear_table=jiffies;

printk("Time to clean the table \n");

temp=head;

­ 35 ­

temp1=head;

while(temp!=NULL)

{

if((last_clear_table­temp­>tolp)>250)

{

if(temp==head)

{

printk("Deleting the first node \n");

head=head­>next;

kfree(temp);

temp=head;

temp1=head;

}

else

{

printk("Deleting inbetween node \n");

temp1­>next=temp­>next;

kfree(temp);

temp=temp1­>next;

}

}

else

{

if(temp==head)

{

temp=temp­>next;

}

else

{

­ 36 ­

temp1=temp;

temp=temp­>next;

}

}

}

last_clear_table=jiffies;

}

if(head==NULL)

{

head=cur_pack;

}

else

{

temp = head;

while(temp != NULL)

{

if(temp­>saddr==cur_pack­>saddr && temp­>daddr==cur_pack­>daddr &&

temp­>sport==cur_pack­>sport && temp­>dport==cur_pack­>dport)

{

temp­>num_of_bytes = temp­>num_of_bytes+cur_pack­>num_of_bytes;

temp­>tolp=cur_pack­>tolp;

if(temp­>num_of_bytes>5000)

sb­>priority=1; // queue 2

else if(temp­>num_of_bytes>1500)

sb­>priority=0; // queue 1

else

sb­>priority=6; // queue 0

temp=NULL;

­ 37 ­

kfree(cur_pack);

}

else

{

if(temp­>next==NULL)

{

temp­>next=cur_pack;

temp=NULL;

}

else

temp=temp­>next;

}

}

}

}

return NF_ACCEPT;

}

//Initialisation routine

int init_module()

{

nfho.hook = hook_func;

nfho.hooknum = NF_IP_POST_ROUTING;

nfho.pf = PF_INET;

nfho.priority = NF_IP_PRI_FIRST;

nf_register_hook(&nfho);

return 0;

}

//Cleanup routine

­ 38 ­

void cleanup_module()

{

nf_unregister_hook(&nfho);

}

5.2 EXPLANATION OF THE CODE

The code can be divided into three distinct parts

1. Registering the hook

2. Un registering the hook

3. The hook function (functionality routine)

Registration of a hook function is a very simple

process that revolves around the nf_hook_ops

structure, defined in linux/netfilter.h. The

definition of this structure is as follows:

struct nf_hook_ops

{

struct list_head list;

// user fills in from here down

nf_hookfn * hook;

int pf;

int hooknum;

int priority; // hooks are ordered in ascending priority

};

The list member of this structure is used to

maintain the lists of Netfilter hooks and has no

­ 39 ­

importance for hook registration as far as users are

concerned. Hook is a pointer to a nf_hookfn

function. This is the function that will be called

for the hook. nf_hookfn is defined in

linux/netfilter.h. The pf field specifies a protocol

family. Valid protocol families are available from

linux/socket.h but for IPv4 we will use PF_INET. The

hooknum field specifies the particular hook to

install this function for and is one of the values

listed in table 1. Finally, the priority field

specifies where in the order of execution this hook

function should be placed. For IPv4, acceptable

values are defined in linux/netfilter_ipv4.h in the

nf_ip_hook_priorities enumeration. We use

NF_IP_PRI_FIRST in our module. As this is the only

module we have, it makes no difference as to what we

use here, but in the case where we have more than

one module we would like to give a proper order of

execution.

Registration of a Netfilter hook requires using a

nf_hook_ops structure with the nf_register_hook()

function. nf_register_hook() takes the address of an

nf_hook_ops structure and returns an integer value.

­ 40 ­

However, if we actually look at the code for the

nf_register_hook() function in net/core/netfilter.c,

we will notice that it only ever returns a value of

zero.

unregistering a Netfilter hook is a lot simpler than

registering it. It is done by calling the function

nf_unregister_hook() with the address of the same

structure we used to register the hook.

To get a better understanding of the functionality

of the code we need to have an understanding of the

data structures used. The module has only one user

defined data structure, flows. The definition of the

structure is given below

struct flows

{

__u16 sport,dport; // source and destination port numbers

__u32 saddr,daddr; // source and destination IP address

__u8 protocol; // Transport layer protocol name

__u32 num_of_bytes; // Total number of bytes sent by this flow

__u32 tolp; // Arrival time of the last packet of this flow

struct flows *next; // Pointer to the next node in the linked list

};

This structure is used to keep track of all the

active flows in the system. It has fields to store

­ 41 ­

the socket details, thereby identifying a flow.

‘saddr’ is a 32 bit field that stores the source IP

address of the flow. ‘daddr’ is another 32 bit field

that stores the destination IP address of the flow.

‘sport’ and ‘dport’ are 16 bits each and store the

source and destination port numbers respectively.

These four fields together uniquely identify a flow.

The protocol field is a 8 bit field that stores the

transport layer protocol of the flow. This is

necessary as there is no point in keeping track of

UDP packets that are connection less and also ICMP

packets where all the four details uniquely

describing a socket are unavailable. ‘tolp’ is a 32

bit field that stores the time when the last packet

of this flow was seen. The time is stored in units

of 10 milliseconds. The last field in this structure

is a pointer to the next node of this type in the

linked list.

Now that the data structure is clear, we can

understand the code better. When the module is

called, it first creates a node of the type ‘flows’

and fills in all the values from the packet at hand.

‘tolp’, time when the packet arrived is got by

­ 42 ­

‘jiffies’. This returns the current time in linux in

10 milliseconds accurate. The source and destination

IP address are got by looking into the network

header of the packet, and as the module is at the

network layer we have access to this information.

The source and destination port numbers can be got

form the transport layer header, if the packet is a

TCP packet. So first a check is done to see if the

packet is a TCP packet, and if it is the port numbers

are got from the transport layer header. Since the

module is at the network layer, we do not have

direct access to this information, so we do pointer

arithmetic to gain access to this information. We

have a pointer to the start of the network header

and we know the layout of the packet. We also have

access to the length of the network header, so now

with all the above information we can reach the

transport layer header.

Source port number and destination port number are

the first two fields in the case of TCP packets.

­ 43 ­

As the ip_header_length got from the IP header is in

words, we multiply by 4 to get the length of the IP

header in bytes. The ‘+2’ in getting the destination

port number is because it is the second field in the

transport layer header and the source port number,

the first one, is 2 bytes long. The next information

we need is the number of data bytes (with respect to

the IP part) in the packet. The IP header gives us

in addition to the IP header length also the total

length of the packet. So the difference in the

values of the two fields is the length of the IP

packet. The next pointer is made null, as we are not

sure if a node corresponding to this flow already

­ 44 ­

Data

Start of Transport
Layer Header

Start of Network
Layer Header

Length of Network
Layer Header

Fig.5 Layout of a Packet showing the various headers.

Source port number = *(ip_header_pointer + (ip_header_length * 4))

Destination port number = *(ip_header_pointer + (ip_header_length *4) + 2)

exists in the linked list. Now with all the details

collected we check if it is time to clean the linked

list. If it more than 2500 milliseconds since we

cleaned the linked list, we do a linear traversal

through all the nodes of the linked list. A check is

done every node to see when was the last time a

packet corresponding to that flow was seen by the

system. If this interval happens to be more than

2500 milliseconds, the node is deleted from the

linked list. If no packet of a flow is seen in a

time as high as 2500 milliseconds then the software

considers the flow to have finished. After the clean

up, we now need to update the linked list with

respect to the packet at hand. So a search is done

in the linked list to see if the there already is a

node corresponding to this flow (the flow from which

this packet came). Then the number of bytes seen of

this flow is updated and the time when the last

packet of this flow was seen is also updated. Now if

for example, the total number of bytes seen of this

flow is more than 5000 bytes the priority field in

the packet is made ‘1’, implies that the packet will

be inserted into q2. if on the other hand the number

­ 45 ­

of bytes seen of this flow is less than 5000 but

more than 1500 then the priority field in the packet

is made ‘0’, implies that the packet will be

inserted in q1. If the number of bytes of this flow

are less than 1500 bytes then the flow is considered

to be a small flow, so the priority field in the

packet is made ‘6’, implies that the packet will be

inserted into q0. After all these updates are done

the new node created for the packet is deleted. If

on the other hand no node (corresponding to the

packet at hand) is found in the linked list it

implies that this is the first packet of the flow.

So the new node created for this packet is inserted

at the end of the linked list, thereby increasing

the number of active flows in the system by one.

Now that the whole module is clear, the next step we

need is to compile the module. As said earlier in

this project we write a makefile.

A makefile is used with the Unix make utility to

determine which portions of a program to compile. A

makefile is basically a script that guides the make

utility to choose the appropriate program files that

are to be compiled and linked together.

­ 46 ­

The make utility keeps track of the last time files

were updated so that it only updates the files

containing changes. However, all of the files that

are dependent on the updated files must be compiled

as well, which can be very time-consuming. With the

help of makefile, the make utility automates this

compilation to ensure that all files that have been

updated - and only those - are compiled and that the

most recent versions of files are the ones linked to

the main program, without requiring the user to

perform the tasks separately.

A makefile contains three types of information for

the make program: a target (the name of what the

user is trying to construct); the rules (commands

that tell how to construct the target from the

sources) and a dependency (the reason that the

target should be constructed, which is usually

because it is out of date in respect to its

components). To create a makefile, the user makes a

file containing shell commands and names it

"makefile." The commands are executed according to

the rules in the makefile when the user types "make"

while in the directory containing the file.

­ 47 ­

The makefile used in this project is as follows

#Makefile

CC= gcc ­I/usr/src/linux­2.4/include

CFLAGS = ­O2 ­D__KERNEL__ ­Wall

My_module.o:My_module.c

­ 48 ­

6 TESTS AND RESULTS

The test case considered for this project is as

follows

A FTP connection between Chekov and Marconi (inside

the internet laboratory) is made. Three files f1, f2

and f3 of sizes 5.7MB, 31.89MB, 79.53MB

(approximate) respectively are sent from Chekov to

Marconi. The three transfers are initiated almost

simultaneously, in reality f3 initiated before f2

and f2 initiated before f1. Thus bringing the

situation where a request for a small file comes

after the request for a big file. The tests were

done thrice without the module inserted and thrice

with the module inserted. The expected result of the

test was to see a decrease in the response time for

the small file when the module was inserted in the

Linux kernel. The response time of the big file was

not predicted as it may have no significant change

as described in section 1.1 or it may have an

acceptable increase as packets of other transfers

are given priority or the response time may decrease

if in the case without modules there was a overflow

in the queue (software queue) and now with the

­ 49 ­

module inserted the packets are distributed better

among the queues and no loss of packets is seen. The

results were seen using the TCPDUMP utility.

­ 50 ­

Chekov

Marconi

Erwin

TCPDUMP is ON in this
system

Fig. 6 Topology of the Internet Laboratory (Machines we are
concerned with)

System where the
MODULE is INSERTED

To make testing possible (as the LAN speed in the

LAB is very high) the module is changed as follows

Packets are inserted into q0 as long as the total

number of bytes seen from a flow is less than

5,000,000 bytes. Packets are inserted in q1 if more

than 5,000,000 bytes but less than 30,000,000 bytes

of a flow are seen. If more than 30,000,000 bytes of

a flow are seen, packets of that flow are inserted

in q2. With the module changed as above the file

sizes were carefully chosen for the test, almost all

packets of file f1 will be in q0, almost all packets

of file f2 will be in q0 and q1 (close to the

maximum permissible in each queue) and file f3 is

the only one that will have the maximum permissible

number of packets (bytes) in q0, q1 and a lot of

packets q2.

TCPDUMP is started at Marconi, it is a router in

this connection and does not have any other load

than forwarding packets so it can handle the extra

work of recording all the packets without much

delay.

­ 51 ­

The results of the transfer of files f1, f2 and f3

without the module inserted is as follows

S.NO FILE F1 FILE F2 FILE F3
1 2.554343 11.311439 23.113718
2 2.216865 11.931338 23.002878
3 3.134354 12.892016 22.586394

The results of the transfer with the module inserted

at Chekov are as shown in the table below

S.NO FILE F1 FILE F2 FILE F3
1 2.056640 11.345540 22.049724
2 2.041893 10.944714 21.556246
3 2.359610 12.110914 22.199290

­ 52 ­

Table 3: Time in seconds (micro seconds accurate) for the transfer of
 files F1, F2 and F3 from Chekov to Marconi. Three trials
 are taken for better precision.

Table 4: Time in seconds (micro seconds accurate) for the transfer of
 files F1, F2 and F3 from Chekov to Marconi (with Module
 inserted). Three trials are taken for better precision.

T ran sfe r T im e o f F iles (F 1 , F 2 , F 3) ­ T ria l 1

0 5 10 15 20 25

1

2

3

T im e (S)

S eries 2

S eries 1

Series 1: Time Taken to Transfer the File with Module Inserted.

Series 2: Time Taken to Transfer the File without the Module Inserted.

T ran sfe r T im e o f F iles (F 1 , F 2 , F 3) ­ T ria l 2

0 5 10 15 20 25

1

2

3

T im e (S)

S eries 2

S eries 1

Series 1: Time Taken to Transfer the File with Module Inserted.

Series 2: Time Taken to Transfer the File without the Module Inserted.

­ 53 ­

T ran sfe r T im e o f F iles (F 1 , F 2 , F 3) ­ T ria l 3

0 5 10 15 20 25

1

2

3

T im e (S)

S eries 2

S eries 1

Series 1: Time Taken to Transfer the File with Module Inserted.

Series 2: Time Taken to Transfer the File without the Module Inserted.

The following table gives the average time taken for

the transfer of the files F1, F2 and F3

S.NO FILE F1 FILE F2 FILE F3
WITHOUT MODULE

1 2.635187 12.044931 22.900997
WITH MODULE

2 2.152714 11.467056 21.935087

­ 54 ­

Table 5: Average Time for the file transfers

T ran s fe r T im e o f F iles (F 1 , F 2 , F 3) ­ Averag e

0 5 10 15 20 25

1

2

3

T im e (S)

S eries 2

S eries 1

Series 1: Time Taken to Transfer the File with Module Inserted.

Series 2: Time Taken to Transfer the File without the Module Inserted.

With the average times as shown above it is clear

that we have an improvement in the response time for

the small file with also the response time for the

other requests improving by a small amount. The

percentage upgrade in the response time for the

three files are as follows

­ 55 ­

Difference in the time taken
for the transfer

% Upgrade in the (with & without the module)
Response time for F1 = ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ * 100

Time taken for the transfer
without the module

= (2.635187 – 2.152714)
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ * 100
 (2.635187)

= 18.31 %

The calculation above proves shows that the response

time for the file F1 has improved by 18.31 %.

Similarly the improvement in the response time for

files F2 and F3 can be calculated

% Upgrade in the
Response time for F2 = 4.80 %

% Upgrade in the
Response time for F3 = 4.22 %

The total bandwidth utilization in both the cases is

described below

Bandwidth utilization without the module

F1 is of size 5756923 Bytes => 46055384 bits

It was transferred in 2.635187 Seconds

Thus the transfer speed in this case is

 46055384 (bits)
= -------- -------

 2.635187 (Seconds)

= 17.48 Mbps

­ 56 ­

F2 is of size 31898736 Bytes => 255189888 bits

It was transferred in 12.044931 Seconds

Thus the transfer speed in this case is

= 255189888 (bits)
--------- --------

12.044931 (seconds)

= 21.19 Mbps

F3 is of size 79532032 Bytes => 636256256 bits

It was transferred in 22.900997 Seconds

Thus the transfer speed in this case is

= 636256256 (bits)
--------- --------

22.900997 (seconds)

= 27.78 Mbps

Bandwidth utilization with the module inserted in

the Linux kernel is as follows

F1 was transferred in 2.152714 seconds (with module)

Therefore the transfer speed when calculated as

above is 21.39 Mbps

­ 57 ­

F2 was transferred in 11.467056 seconds (with

module). Therefore the transfer speed when

calculated as above is 22.25 Mbps

F3 was transferred in 21.935087 seconds (with

module). Therefore the transfer speed when

calculated as above is 29.01 Mbps

­ 58 ­

BANDWIDTH CALCULATION (IN DETAIL)

TRIAL 1

­ 59 ­

S1

S2

S3
S4

S5

S1 – 1601248 Bytes

S2 – 2600576 Bytes

S3 – 17544840 Bytes

S4 – 45918976 Bytes

S5 – 51060624 Bytes

S1 – 0.308665 S

S2 – 0.310337 S

S3 – 2.552042 S

S4 – 8.445657 S

S5 – 11.494316 S

F3

F2

F1

S1 – 41.50 Mbps

S2 – 67.04 Mbps

S3 – 55.00 Mbps

S4 – 43.50 Mbps

S5 – 35.54 Mbps

Number of Bytes Sent Time Elapsed Bandwidth Utilized

Total number of Bytes Sent = 118726264 Bytes => (949810112 bits)

Total Elapsed Time in Seconds = 23.111017 Seconds

Average Bandwidth Utilized = 41.10 Mbps

Fig. 7 Start and Stop Times of the File Transfers.
 Number of bytes transferred in each interval.

During S1 only F3 is sent on the Link so Bandwidth

utilized is 41.50 Mbps

During S2, F3 and F2 are sent on the Link so

Bandwidth utilized is as follows

F3 – 34.00 Mbps

F2 – 33.04 Mbps

During S3, F3, F2 and F1 are sent on the Link so

Bandwidth utilized is as follows

F3 – 13.71 Mbps

F2 – 22.81 Mbps

F1 – 18.47 Mbps

During S4, F3 and F2 are sent on the Link so

Bandwidth utilized is as follows

F3 – 20.87 Mbps

F2 – 22.62 Mbps

During S5 only F3 is sent on the Link so Bandwidth

utilized is 35.54 Mbps

­ 60 ­

TRIAL 2

­ 61 ­

S1

S2

S3
S4

S5

S1 – 949496 Bytes

S2 – 2473072 Bytes

S3 – 14505248 Bytes

S4 – 54013336 Bytes

S5 – 46761408 Bytes

S1 – 0.285565 S

S2 – 0.320414 S

S3 – 2.214523 S

S4 – 9.393935 S

S5 – 10.786093 S

F3

F2

F1

S1 – 26.50 Mbps

S2 – 61.77 Mbps

S3 – 52.40 Mbps

S4 – 46.00 Mbps

S5 – 34.68 Mbps

Number of Bytes Sent Time Elapsed Bandwidth Utilised

Total number of Bytes Sent = 118702560 Bytes => (949620480 bits)

Total Elapsed Time in Seconds = 23.000530 Seconds

Average Bandwidth Utilized = 41.29 Mbps

Fig. 9 Start and Stop Times of the File Transfers.
 Number of bytes transferred in each interval.

During S1 only F3 is sent on the Link so Bandwidth

utilized is 26.60 Mbps

During S2, F3 and F2 are sent on the Link so

Bandwidth utilized is as follows

F3 – 23.98 Mbps

F2 – 37.79 Mbps

During S3, F3, F2 and F1 are sent on the Link so

Bandwidth utilized is as follows

F3 – 20.53 Mbps

F2 – 10.73 Mbps

F1 – 21.14 Mbps

During S4, F3 and F2 are sent on the Link so

Bandwidth utilized is as follows

F3 – 22.19 Mbps

F2 – 23.81 Mbps

During S5 only F3 is sent on the Link so Bandwidth

utilized is 34.68 Mbps

­ 62 ­

TRIAL 3

­ 63 ­

S1

S2

S3
S4

S5

S1 – 2191184 Bytes

S2 – 1520416 Bytes

S3 – 19068928 Bytes

S4 – 53607856 Bytes

S5 – 42452232 Bytes

S1 – 0.342334 S

S2 – 0.287178 S

S3 – 3.132024 S

S4 – 9.470204 S

S5 – 9.352405 S

F3

F2

F1

S1 – 51.21 Mbps

S2 – 42.35 Mbps

S3 – 48.71 Mbps

S4 – 45.29 Mbps

S5 – 36.31 Mbps

Number of Bytes Sent Time Elapsed Bandwidth Utilised

Total number of Bytes Sent = 118840616 Bytes => (950724928 bits)

Total Elapsed Time in Seconds = 22.584149 Seconds

Average Bandwidth Utilized = 42.10 Mbps

Fig. 10 Start and Stop Times of the File Transfers.
 Number of bytes transferred in each interval.

During S1 only F3 is sent on the Link so Bandwidth

utilized is 51.21 Mbps

During S2, F3 and F2 are sent on the Link so

Bandwidth utilized is as follows

F3 – 21.09 Mbps

F2 – 21.26 Mbps

During S3, F3, F2 and F1 are sent on the Link so

Bandwidth utilized is as follows

F3 – 20.15 Mbps

F2 – 13.50 Mbps

F1 – 15.06 Mbps

During S4, F3 and F2 are sent on the Link so

Bandwidth utilized is as follows

F3 – 22.94 Mbps

F2 – 22.35 Mbps

During S5 only F3 is sent on the Link so Bandwidth

utilized is 36.31 Mbps

­ 64 ­

TRIAL 4

­ 65 ­

S1

S2

S3
S4

S5

S1 – 1950760 Bytes

S2 – 2646248 Bytes

S3 – 15620280 Bytes

S4 – 53019968 Bytes

S5 – 46057984 Bytes

S1 – 0.266991 S

S2 – 0.244770 S

S3 – 2.055328 S

S4 – 9.043214 S

S5 – 10.437152 S

F3

F2

F1

S1 – 58.45 Mbps

S2 – 66.88 Mbps

S3 – 60.80 Mbps

S4 – 46.90 Mbps

S5 – 35.30 Mbps

Number of Bytes Sent Time Elapsed Bandwidth Utilised

Total number of Bytes Sent = 118695240 Bytes => (949561920 bits)

Total Elapsed Time in Seconds = 22.047455 Seconds

Average Bandwidth Utilized = 43.07 Mbps

Fig. 11 Start and Stop Times of the File Transfers.
 Number of bytes transferred in each interval.

During S1 only F3 is sent on the Link so Bandwidth

utilized is 58.45 Mbps

During S2, F3 and F2 are sent on the Link so

Bandwidth utilized is as follows

F3 – 28.63 Mbps

F2 – 38.25 Mbps

During S3, F3, F2 and F1 are sent on the Link so

Bandwidth utilized is as follows

F3 – 17.66 Mbps

F2 – 20.34 Mbps

F1 – 22.80 Mbps

During S4, F3 and F2 are sent on the Link so

Bandwidth utilized is as follows

F3 – 23.87 Mbps

F2 – 23.04 Mbps

During S5 only F3 is sent on the Link so Bandwidth

utilized is 35.30 Mbps

­ 66 ­

TRIAL 5

­ 67 ­

S1

S2

S3
S4

S5

S1 – 1662744 Bytes

S2 – 1718568 Bytes

S3 – 15452032 Bytes

S4 – 53421064 Bytes

S5 – 46411528 Bytes

S1 – 0.341395 S

S2 – 0.283206 S

S3 – 2.039847 S

S4 – 8.618819 S

S5 – 10.270640 S

F3

F2

F1

S1 – 38.96 Mbps

S2 – 48.55 Mbps

S3 – 60.60 Mbps

S4 – 49.59 Mbps

S5 – 36.15 Mbps

Number of Bytes Sent Time Elapsed Bandwidth Utilised

Total number of Bytes Sent = 118665936 Bytes => (949327488 bits)

Total Elapsed Time in Seconds = 21.553907 Seconds

Average Bandwidth Utilized = 44.04565 Mbps

Fig. 12 Start and Stop Times of the File Transfers.
 Number of bytes transferred in each interval.

During S1 only F3 is sent on the Link so Bandwidth

utilized is 38.96 Mbps

During S2, F3 and F2 are sent on the Link so

Bandwidth utilized is as follows

F3 – 10.30 Mbps

F2 – 38.25 Mbps

During S3, F3, F2 and F1 are sent on the Link so

Bandwidth utilized is as follows

F3 – 16.24 Mbps

F2 – 21.30 Mbps

F1 – 23.07 Mbps

During S4, F3 and F2 are sent on the Link so

Bandwidth utilized is as follows

F3 – 25.79 Mbps

F2 – 23.80 Mbps

During S5 only F3 is sent on the Link so Bandwidth

utilized is 36.15 Mbps

­ 68 ­

TRIAL 6

­ 69 ­

S1

S2

S3
S4

S5

S1 – 2223240 Bytes

S2 – 974080 Bytes

S3 – 15207592 Bytes

S4 – 55814420 Bytes

S5 – 44373424 Bytes

S1 – 0.305535 S

S2 – 0.281557 S

S3 – 2.357509 S

S4 – 9.469518 S

S5 – 10.369299 S

F3

F2

F1

S1 – 58.21 Mbps

S2 – 27.68 Mbps

S3 – 51.61 Mbps

S4 – 47.15 Mbps

S5 – 34.23 Mbps

Number of Bytes Sent Time Elapsed Bandwidth Utilised

Total number of Bytes Sent = 118591656 Bytes => (948733248 bits)

Total Elapsed Time in Seconds = 22.783418 Seconds

Average Bandwidth Utilized = 41.64 Mbps

Fig. 14 Start and Stop Times of the File Transfers.
 Number of bytes transferred in each interval.

During S1 only F3 is sent on the Link so Bandwidth

utilized is 58.21 Mbps

During S2, F3 and F2 are sent on the Link so

Bandwidth utilized is as follows

F3 – 25.41 Mbps

F2 – 2.27 Mbps

During S3, F3, F2 and F1 are sent on the Link so

Bandwidth utilized is as follows

F3 – 16.34 Mbps

F2 – 15.27 Mbps

F1 – 20.00 Mbps

During S4, F3 and F2 are sent on the Link so

Bandwidth utilized is as follows

F3 – 23.62 Mbps

F2 – 23.53 Mbps

During S5 only F3 is sent on the Link so Bandwidth

utilized is 34.23 Mbps

The results show that the link is not overloaded and

to observe better results the system needs to be

overloaded.

­ 70 ­

A surprising finding was that the time to transport

a file improved (with the module inserted in the

kernel) for all the three files (small, medium and

large). It was expected that the time would decrease

considerably for the small files, and if the time

increased in case of the large file would be by a

small amount. The reason for the counter intuitive

result may be related to the fact that even while

the three file transfers were in progress

simultaneously, the link utilization was only about

55 – 60%. This, together with the TCP feed back may

have caused the uniform improvement.

Another reason for an improved transfer time in all

the three files may be attributed to the fact that

there are fewer drops (with the module inserted) at

the software queue associated with a network device

when compared to the case when the module is not

inserted. This is because packets are inserted in

all the three queues (software queues) instead of

being inserted only in one queue.

This point can be investigated in future projects.

­ 71 ­

7 FUTURE IMPROVEMENTS

The future prospects of this project are to take

into consideration the type of flows. If there are

well known port numbers like telnet (23), FTP

control channel (21) we may want to create nodes in

the front end of the linked list. These ports create

a lot of packets but each with very little data. So

instead of wasting time traversing the linked list

at the hook, if we had nodes corresponding to these

port numbers at the front of the linked list it

would save time. Another alternative could be to

always put the packets from these ports (FTP control

or telnet) in q0 as they may have important

information. It also saves the time at the hook, as

the computation is reduced. We can also change the

scheduling mechanism and increase the number of

queues (9 instead of 3), thus we can get really fine

in segregating the response, but at the cost of

additional computation involved.

One more feature that can be added is to put all UDP

packets in q0, the queue with the highest priority,

as real time traffic may be sent using UDP packets

­ 72 ­

and giving high priority to these packets is

desirable.

­ 73 ­

8 PROBLEMS ENCOUNTERED

The system crashes in the scenario described below:

A ping from system 1 to system 2 (with the module

inserted in system 1) using options like ‘-i’, ‘-f’,

‘-s’ made the system vulnerable.

The syntax of the ping command is given below:

ping –s 14720 –i 0.01 marconi (from hawking) or

ping –s 14729 –f marconi (from hawking)

Observation: The system worked normally for some

time and then crashed. The amount of time for which

the system worked was not the same in all trials.

­ 74 ­

9 REFERENCES

1. Bansal, N. and Harchol-Balter, M. 2001. Analysis

of SRPT Scheduling: Investigating unfairness. In

Proceedings of ACM SIGMETRICS ’01.

2. D0 Code – comprehensively cross – referenced and

searchable code

 http://www-d0.fnal.gov/D0Code/source

3. PHRACK ...a Hacker magazine by the community, for

the community...

 http://www.phrack.org

4. Tutorial on Kernel Recompilation

 http://web.njit.edu/~ott

5. Behrouz A. Forouzan, 2003, TCP/IP Protocol Suite,

Mc Graw Hill.

6. The “Networking” code in Linux, Teunis J. ott and

Rahul Jain July 29, 2004.

7. A Map of the Networking Code in Linux Kernel

2.4.20 by M.Rio et al. 31 March 2004.

­ 75 ­

I APPENDIX

Some of the commands and their options learnt during

the project are:

1. Ping and some of its options are described below

Ping Marconi

This sends ping packets with an interval of 1 second

between successive packets. The size of the ping

packet is 64 bytes (56 + 8 due to ICMP).

Ping –s 14720 Marconi

This option ‘-s’, is used to specify the size (in

bytes) of the ping packet. 8 bytes due to ICMP are

added to the specified size. If the size specified

is less than 8 bytes then the time option is not

included in the ping packet.

Ping –i 0.01 Marconi

This option ‘-i’, is used to specify the interval

between successive ping packets. The interval

specified is in seconds.

Ping –f Marconi

This option is used to flood the link with ping

packets. When this option is used ping places a dot

‘.’ On the screen for every packet transmitted and

takes of a dot for every packet received.

­ 76 ­

2. mii-tool and the option used with it is described

below:

This utility is used to set the status of a network

device.

mii­tool

This command prints all the devices and their

status.

The speed of the device can be changed with the

following command

mii­tool –F 10baseT­FD

The above command forces the device to work at

10Mbps.

mii­tool –F 100baseTx­FD

The above command forces the device to work at

100Mbps.

­ 77 ­

