IP Traceback with

Probabilistic Packet Marking

Submitted to the

Department of Computer Science

College of Computing Sciences

New Jersey Institute of Technology
in Partial Fulfillment of

the Requirements for the Degree of

Master of Science

by
Ashwin Kulkarni
APPROVALS

Proposal Number:​​​​​​​​​​​​​​​​​_________________________________

Approved by: ____________________________________

(Dr. Teunis J. Ott)

Date Submitted: __________________________________​

ABSTRACT
Denial of service attack by sending a large number of IP packets to a server is one of the important issues in network security. A solution to this issue is the technique of Probabilistic Packet Marking. The scope of this project is to study the implementation of IP options in the Linux kernel and implement a new IP option to facilitate Probabilistic Packet Marking. The IP packets are probabilistically marked at the routers with the IP address of the interface on which the packets were received. The marking is implemented as a new IP option, which contains four bytes of IP address. Thus each marked packet represents partial information of the path it has traversed. At the victim, after collecting the information from modest number of marked packets, the entire path taken by the packets of the attack can be reconstructed.
	TABLE OF CONTENTS

	

	1.
	INTRODUCTION
	

	
	1.1
	Problem statement
	

	
	1.2
	Previous work
	

	
	1.3
	Glossary
	

	
	
	
	

	2.
	BACKGROUND OF LINUX NETWORKING SUBSYSTEM
	

	
	2.1
	sk_buff structure
	

	
	2.2
	IP options implementation
	

	
	
	Netfilter architecture
	

	
	
	Loadable kernel modules
	

	
	
	
	

	
	DESIGN OF THE PROJECT
	

	
	
	Algorithm
	

	
	
	Choice of Netfilter hooks
	

	
	
	
	

	
	IMPLEMENTATION
	

	
	
	Explanation of the code
	

	
	
	
	

	
	VERIFICATION
	

	
	
	Description of test cases
	

	
	
	Justification of test cases
	

	
	
	Test run procedures and results
	

	
	
	
	

	
	CONCLUSION
	

	
	
	Summary
	

	
	
	Problems encountered and solved
	

	
	
	Suggestions for future extensions
	

	
	
	
	

	REFERENCES
	

	
	
	
	

	APPENDIX
	

	
	
	
	

CHAPTER 1
INTRODUCTION

1.1 Problem Statement
A method of Denial of Service attacks is sending a large number of IP packets to the victim. Many times it is difficult to identify the real source of DoS attack packets because attackers use incorrect or spoofed IP addresses in the attack packets. The technique of Probabilistic Packet Marking as defined in [1] is an approach to overcome this problem. This technique uses the fact that a large number of packets are used in such attacks. When each packet arrives at the router enabled with PPM capability, it is probabilistically marked with the IP address of the interface on which it was received. If the packet probabilistically chosen to be marked is already marked, then the earlier IP address is overwritten. Hence each packet contains a sample of the path it has traversed. At the target host, each router address received as a mark, is ranked by the number of packets in which it was received. If the marking probability p is identical at each router, then the probability of receiving a packet marked by a router at a distance of d hops is p(1 – p)d - 1 , which is a strictly decreasing function of the distance to the victim. As the number of DoS attack packets will be much more than other packets, the ranking of the routers marking them will be higher. Hence after a sufficient number of packets are received at the target host, ranking each router by the number of samples it contributes to will tend to produce the attack path. This technique assumes that the attacker sends enough packets and the path taken by these packets is stable enough that this algorithm can converge.
The project implements the Node Sampling algorithm in [1]. The mark is implemented as an IP option which holds 32 bits of IPv4 address. The format of the option is as follows.

	Code

00001010
	Length

00000110
	IP address (address of incoming interface)

32 bits

a. Format of the IP option used for PPM.

Copy bit: 0 (copied only in first fragment)

Class: 00 (Datagram control)

Number: 01010

Length: 6

	Code
00001010
	Length
00000110
	00001010
	00001010
	00000000
	00000001

b. IP option marked with interface address 10.10.0.1
Figure 1.1 IP option implemented for PPM
The PPM logic is implemented as a loadable kernel module. It is a netfilter module hooked into the NF_IP_FORWARD netfilter hook. Netfilter architecture and kernel modules are explained in the sections 2.3 and 2.4. When a router decides to mark a packet, it first checks if the option is present in the IP header of the packet. If so, it will write the IP address of the interface on which the packet was received. The existing address will be overwritten. If the IP header does not contain the option and if there is enough space in the header to include the option, the router will insert the option in the IP header and will write the IP address of the incoming interface. The target host will maintain a list of IP addresses and their count.
1.2 Previous work
Because of the increasing threat of DoS attacks, IP traceback has become very relevant to the Internet security. Various IP traceback schemes are discussed in [2] which fall into four general categories.
1. End-host storage
In this technique, path to the source of the attack is reconstructed at the end host i.e. the victim. PPM falls in this category. There is another approach called ICMP traceback, in which a router on a network is configured to pick a packet statistically and generate an ICMP traceback message directed to the same destination. The destination uses these ICMP messages for path reconstruction.
2. Packet logging
Hash-Based IP traceback is a technique which falls under this category. In Hash-Based traceback, every router captures partial packet information of every packet that passes through it, to be able to determine in the future, whether that packet passed through it. These routers are called Data Generation Agents (DGAs), as they store the digests of the packets passing through them.
3. Specialized routing
A solution falling into this category is Overlay Network. It introduces a tracking router (TR) in the network which monitors all the traffic passing through the network. The TR utilizes signature based intrusion detection. A generic route encapsulation (GRE) tunnel is built from every edge router to the TR, hence logically it is one hop from an edge router to the TR. When an attack is detected, the origin of the attack can be identified as it is only one hop away. Since tunnels are built over the existing topology and use existing routing protocols, this is said to be an overlay network.

4. State of the network interface

Controlled flooding is a technique of this category which uses the fact that during DoS attacks, the link of the attack path should be heavily flooded. By measuring incoming traffic to the attacked system and loading the links of the suspected path more, a drop in the rates of attack packets should be observed. The process can be repeated for the next hop and so on until the source of the attack is identified.

[1] introduces the PPM approach and goes over various algorithms for the same. This project implements the node sampling algorithm.

1.3 Glossary

IP – Internet Protocol

Victim – A host under Denial of Service attack

PPM – Probabilistic Packet Marking

DoS – Denial of Service

CHAPTER 2
BACKGROUND OF LINUX NETWORKING SUBSYSTEM

This chapter introduces socket buffer management (i.e., the structure sk_buff). Then the implementation of IP options in the Linux kernel version 2.6 is discussed, followed by an overview of the Netfilter facility and loadable kernel modules. All file locations hereafter are defined as relative path considering /usr/src/linux* directory as the base where * corresponds to appropriate Linux kernel version (e.g for Fedora Core 2, the base directory is /usr/src/linux-2.6.5-1.358/).
2.1 sk_buff structure

In Linux, socket buffer is the structure used to address and manage a packet during its entire processing lifetime in the Linux kernel. A socket buffer consists of two parts:

· Packet data: This storage location stores data actually transmitted over the network.

· Management data (struct sk_buff): While a packet is being processed in the kernel, the kernel needs to maintain implementation specific data such as pointers, timers etc. which is achieved using struct sk_buff. It is defined in include/linux/skbuff.h.
When an application passes data to a socket, the socket creates an appropriate socket buffer structure and stores the payload data address in the variables of this structure. During its travel across the layers, the packet headers of each layer are inserted in front of the payload. The free storage space in front of the currently valid packet data is called headroom and the storage space behind the current packet data is called tailroom. When a packet is received over a network adapter, the method dev_alloc_skb() is used to request a sk_buff structure. This structure is then used to store the management data about the received packet till the packet is being processed in the kernel. The pointer to the sk_buff structure is usually named skb.
The parameters of the sk_buff structure relevant to this project are briefly explained below (Figure 2.1). Detailed information of the sk_buff structure is in the chapter 4 of [3].
	[image: image1.png]192 struct sk_buff {

214 union {

215 struct iphdr *iph;

216 struct ipvéhdr *ipvéh;

217 struct arphdr *arph;

218 unsigned char *raw;

219 } nh;

228 ,*

229 * This is the control buffer. It is free to use for every
230 * layer. Please put your private variables there. If you
231 * want to keep them across layers you have to do a skb_clone()
232 * first. This is owned by whoever has the skb queued ATM.
233 */

234 char cb[401;

235

236 unsigned int len,

279 unsigned char *head,

280 *data,

281 *tail,

282 *end;

283 3

	Figure 2.1 The sk_buff structure

· nh is a union of the pointers to the packet header of the network layer. For example, iph is the pointer to the IPv4 header. raw is also the pointer to the packet header, primarily for the network layer protocols apart from IPv4, IPv6 and ARP. raw and other packet header pointers can be used instead of each other, i.e. skb->nh.iph and skb->nh.raw can be used alternately as they point to the same location in the packet data. Using the iph pointer helps to access IPv4 header contents without the pointer arithmetic. For example, skb->nh.iph->saddr will give the source IP address of four bytes, which can also be accessed as skb->nh.raw + 12. struct iphdr is defined in include/linux/ip.h.
· cb is the control buffer of 48 bytes. In the network layer, when IP options are stored in the packet data next to IPv4 header, struct ip_options (defined in include/linux/ip.h) containing information about the options present is stored in the initial 12 bytes of cb. Detailed information about the IP option implementation is in the next section.
· len is the length of the packet represented by the socket buffer. This variable is changed accordingly if bytes is pushed to or removed from the packet data using functions such as skb_push() and skb_pull().
· head, data, tail, end: The head and end pointers point to the total location that can be used for packet data. The data and tail pointers point to currently valid packet data. The space between head and data is headroom, the space between tail and end is tailroom. The headroom and tailroom allow a protocol to add protocol data before or after the currently valid packet data. For example, when the packet goes from a higher protocol to lower protocol, the lower protocol adds its header in the headroom, in front of the higher protocol header. skb_push() and skb_pull() functions adjust the data pointer according to the insertion or deletion made to the packet data.
2.2 IP Options implementation
In Linux kernel, if IP options are passed to or from functions, this is usually achieved using the ip_options structure. It is defined in include/linux/ip.h and includes the variables storing information about all packet options.
	[image: image2.png]88 struct ip_options {

89
%0
o1
92
93
e
95
96
97
98
99
100
101
102
103
104
105

__u3s2
unsigned
unsigned
unsigned
unsigned
unsigned

char
char
char
char
char

unsigned char
unsigned char
unsigned char
unsigned char

106 };

faddr;
optlen;
srr;
rr;
ts;
is_setbyuser:1,
is_data:l,
is_strictroute:l,
srr_is_hit:l,
is_changed:1,
rr_needaddr:1,
ts_needtime:1,
ts_needadd:
router_alert;
__padl;
" pad2;
"data[0l;

/%

/%
/%
/%
/%
/%
/%
/%
/%

saved first hop address */

set by setsockopt?
options in _ data, rather than skb
strict source route

Packet destination addr was our one
Ip checksum more not valid

Need to record addr of outgoing dev
Need to record timestamp

Need to record addr of outgoing dev

>/
>/
>/
>/
>/
>/
>/
*/

	Figure 2.2 The ip_options structure

The parameters of struct ip_options are explained below.
· optlen specifies the total length in bytes of all IP options present in the packet, including No operation and End of option.
· srr, rr, ts contain the offset in bytes of the start of strict source route, record route and timestamp options respectively from the beginning of the IP header, when these options are present. If any of these options is not present, the offset value in its corresponding variable is 0.
· is_data is a one bit flag indicating that the IP options data is beginning from __data instead of being in the packet memory. When a socket creates an IP options structure, it stores the options data next to it, i.e. beginning from the memory location __data and is_data bit is set.
	faddr

	optlen

	srr

	rr

	ts

	flags

	router_alert

	__pad1

	__pad2

	__data

		

	(IP options data beginning from __data)

	

			

	

	Figure 2.3 struct ip_options with the IP options data

The function ip_options_build() (which is defined in net/ipv4/ip_options.c) copies the options data from __data to the packet memory. When a socket buffer is passed as a parameter to this function, the packet memory associated with it already contains a space of optlen bytes between the IP header and the IP data, to accommodate the options data from the IP options structure. Before ip_options_build() is called, it should be ensured that this space is created.
· is_changed a bit flag which should be set to indicate that the IP checksum is not valid because of the changes made in the IP options data. However, the use of this variable seems to be limited to ip_forward_options() in net/ipv4/ip_options.c. At the end of ip_forward_options(), if this variable is set, ip_send_check() is called to recompute the IP checksum. Also, kernel does not depend on this variable to check if the IP checksum is valid. Hence if the IP options data is changed, ip_send_check() should be called explicitly to recompute the IP checksum.
· router_alert contains the offset in bytes of the start of the router alert IP option from the beginning of the IP header when this option is present in the packet. Detailed information about this option can be found in RFC 2113.
· __pad1 and __pad2 are used for padding to make the size of the IP options structure a multiple of 4 bytes, so that the structure is aligned to the 32-bit boundary. These fields are unused at present and can be used to store the offset of a new IP option.

When IP options data is stored in packet memory, the IP options structure is stored in the socket buffer in the initial 12 bytes of cb. It is usually accessed using the preprocessor macro IPCB, defined in include/net/ip.h. The macro is defined as follows.
#define IPCB(skb) ((struct inet_skb_parm*)((skb)->cb))
Usually a local pointer variable of type struct ip_options is created and the IP options structure in cb is accessed as follows.
struct ip_options *sopt;
sopt = &(IPCB(skb)->opt);
	[image: image3.png]IP options in sk_buff Packet memory
neadroom
& buff
First 20 bytes of IP header
NOB 7 EE] 20
o 10 o 2
1000 10 T o 1
) T e o1 10 T o 2
= 0 [0 10 T o 1
g
Empty

P data

3
options
data

	Figure 2.4 Example of record route option in stored in packet memory

Figure 2.4 shows an example of the record route option stored as a part of the IP header in the packet memory and corresponding IP options structure stored in the initial 12 bytes of cb of socket_buffer. The value of optlen is 40, as the IP options present are one byte of no operation and 39 bytes of record route option. The offset value in rr is 21, which means that the record route option starts after 21 bytes from the beginning of the IP header. In the packet memory, the 22nd byte contains the value 7, which is the code of the record route option. The next byte in the packet memory contains 39, which is the total length of the record route option. The pointer field of the record route option contains the value 20, which is the offset of the first empty entry in the data of the record route option, from the beginning of IP options part of the IP header. Since strict source route and timestamp options are not present, the value of srr and ts in the IP options structure is 0. As the IP options data is in the packet memory, the value of __data is 0 in the IP options structure.

For detailed information about the functions operating on IP options, please refer 14.3.3 and 14.3.4 of [3].
2.3 Netfilter architecture
2.4 Loadable kernel modules

REFERENCES
1. Savage S., Wetherall D., Karlin A., & Anderson T., “Network Support for IP Traceback,” IEEE/ACM transactions on networking, vol. 9, no. 3, June 2001, pp- 226-237.
2. Belenky A. & Ansari N., “On IP Traceback,” IEEE Communications Magazine, vol. 41, no. 7, July 2003, pp- 142-153.
3. Wehrle K. et el, The Linux networking architecture, Pearson Prentice Hall, New Jersey, 2005.

This page enlists the additions/changes pending this document. Remove this page after the document is complete.

1. change the reference writing style, write names as they are in the ref. itself.
2. in 2.1, rewrite description of len (of skb) based on the output of testmod.
PAGE

