

To Prevent IP Source Address Spoofing

Submitted to the

Department of Computer Science

College of Computing Sciences

New Jersey Institute of Technology

In Partial Fulfillment of

The Requirements for the Degree of

Master of Science

By

Ankit Katyal
SID: 212-47-226

APPROVALS

Proposal Number: _________________________________

Approved by: ____________________________________
(Dr. Teunis J. Ott)

Date Submitted: __________________________________

I hereby affirm that I have followed the directions as published in the

program Web-page at

http://cs.njit.edu/~mscs/

And I confirm, that this proposal is my own personal work and that all

material other than my own is properly referenced.

Student’s Name: ____________________________

Student’s Signature: ____________________________

Date: ____________________________

Acknowledgements

I would like to take this opportunity to express my gratitude and thank Dr. Teunis J. Ott for his
guidance and invaluable help without which this project would not have been possible.

I must also acknowledge the invaluable help provided by Mr. Rahul Jain Teaching Assistant to Dr.
Ott during the project

Sincerely,

(Ankit Katyal)

Certificate

This is to certify that the project report titled “To Prevent IP Source Address Spoofing” is a
bonafide record of the project work carried out under my supervision by Mr. Ankit Katyal, Student
ID: 212-47-226 at the Department of Computer Science, New Jersey Institute of Technology,
from September-2004 to December-2004, for partial fulfillment of requirements towards his
Master’s degree.

Dr. Teunis J. Ott
Department of Computer Science
New Jersey Institute of Technology

Abstract

Source Address Spoofing has become a problem due to the increased number of denial of
service attacks being carried out by using means of opening hundreds even thousands of half
open TCP connection’s or more commonly known as SYN flooding. This project attempts to
prevent this by modifying the way the router forwards packets i.e. instead of only checking the
destination address for deciding on the forwarding route the source address is also verified to be
correct. This can be achieved my modifying the free and open source operating system Linux

This project deals with modifying the behavior of the Linux Kernel by adding a function at such a
point in the Linux Kernel where we know packets of a certain type would always pass which in
our case are the packets that have to be forwarded and are not meant for the machine itself.

To do this we maintain a link list comprising of a structure which has the source address, entry
interface and whether the address is valid or not as its components. To know whether the source
address is valid or not whenever a packet of a new flow arrives we first check whether the source
address is already known to us and is valid or invalid, otherwise we temporarily declare the
source address to be invalid and try to validate it using mechanisms which are explained later.

 1

 Table of Contents

Table of Contents -- 1
1 Introduction and Background --- 3

1.1 Statement of Problem Area --- 3
1.2 Previous Work-- 3
1.3 Background --- 4

1.3.1 Loadable Linux Kernel Modules --- 4
1.3.2 The Net Filter Facility --- 4

1.4 Brief Project Description --- 5
1.5 Objective of Project --- 5

2 Background of the Linux Routing Functionality--- 6
2.1 Loadable Linux Kernel Modules --- 6
2.2 SK_BUFF Structure --- 8
2.3 The Net Filter Facility --- 11

2.3.1 Defining a NetFilter hook -- 13
2.3.2 IP Packet Transmission through the Netfilter Layer--- 14
2.3.3 Iterating through the hook chain --- 17

2.4 Connection Tracking-- 21
2.5 Routing Tables --- 26

The Neighbor Table -- 26
The Forwarding Information Base -- 27
The Routing Cache --- 31
Updating Routing Information-- 33

3 System Functional Specification --- 34
3.1 Functions Performed-- 34
3.2 External and Internal Limitations and Restrictions -- 34

4 System Performance Requirements -- 35
4.1 Efficiency -- 35
4.2 Reliability -- 35

4.2.1 Description of Reliability Measures and Failure Rate--- 35
4.3 Maintainability -- 35
4.4 Modifiability-- 36
4.5 Portability -- 36

5 System Design Overview -- 37
5.1 System Data Flow Diagrams --- 37
5.2 System Internal Data Structure -- 40
5.3 Description of System Operation -- 40
5.4 Implementation Languages --- 41
5.5 Required Support Software --- 41

6 System Data Structure Specifications -- 42
6.1 Other User Input Specification --- 42

6.1.1 Identification of Input Data--- 42
6.1.2 Source of Input Data-- 42
6.1.3 Input Device--- 42
6.1.4 Data Format--- 42

6.2 Other User Output Specification --- 43
6.2.1 Identification of Output Data -- 43
6.2.2 Destination of Output Data -- 43
6.2.3 Output Device -- 43
6.2.4 Output Interpretation-- 43

6.3 System Internal Data Structure Specification--- 44
6.3.1 Identification of Data Structures-- 44
6.3.2 Modules Accessing Structures --- 44

 2

6.3.3 Logical Structure of Data -- 45
7 Module Design specifications--- 47

7.1 Module Functional specification-- 47
7.1.1 Functions Performed-- 47
7.1.2 Module Interface Specifications-- 48

7.2 Module operational Specification -- 49
7.2.1 Locally Declared Data Specifications--- 49
7.2.2 Algorithm Specification--- 51
7.2.3 Description of Module Operation -- 60

8 System Verification-- 61
8.1 Functions to Be Tested--- 61
8.2 Description of Test Cases --- 61
8.3 Test Run Procedures and Results--- 64

9 Conclusions --- 93
9.1 Summary -- 93
9.2 Problems Encountered and Solved --- 94
9.3 Suggestions for Future Extensions to Project -- 95

Glossary -- 96
Bibliography --- 97
Appendices -- 98

Appendix A --- 98
Spoofing of Source Address Code-- 98

Program Listings --100
User Manual--108

 3

1 Introduction and Background

1.1 Statement of Problem Area

Source Spoofing is the activity where a remote system sends out false or misleading source IP
addresses most commonly to facilitate a denial of service attack This works on the theory that a
machine whenever it receives a new connection request from a new IP address allocates
resources for the new connection that is called half open as the SYN-ACK packet is sent back
and an ACK packet is expected. If there are thousands of such requests at the same time from
different IP addresses then the machine would try to allocate resources for all these half open
connections and can consequently crash taking all its offered services down from the internet with
it. Thus a malicious machine if it sends out thousands of such requests all targeted at the same
machine but with different source addresses would then be able to crash the victim machine. This
is essentially done to disable the victim machine or even the entire network. Depending on the
nature of enterprise, it can even disable the entire organization and prevent access by genuine
users.

In this project the system is so designed and implemented that the routers filter incoming packets,
and determine based on the combination of source and destination address, whether the packet
has come from a legitimate source address and the proper network interface. If the above two
conditions are not met then spoofing is assumed and the packet is dropped.

This paper first explains the fundamental concepts of Modules, the Net Filter Architecture and
routing which are used in the project in section 2.In section 3 and 4 the functionality of the project
and performance parameters are delimited. Section 5 describes how the data flows through the
system and what sort of data structures would be needed. System Interaction with how data
would enter the system and how would output of the system would be shown to the user along
with the data structures we need to define is discussed in Section 6. Section 7 covers the
definition of the modules we require their operation and algorithms for the various modules and
Section 8 describes the testing phase which covers the test cases in which we had to write an
function that does spoofing of Source Addresses. Section 9 concludes the project with the
problems we encountered during the project and how it could be extended.

1.2 Previous Work

To prevent address spoofing thus changes have to be made as to how the packet is handled in
the kernel of the Operating System of the router. For this purpose the Operating System that was
chosen was Linux as it is open source and the source code is available which can be used to
incorporate changes to prevent source address spoofing

This project is based on the functionality provided by the Linux 2.4 kernel code as it is currently
the most stable version of the kernel available. It also draws upon the information provided by the
documentation of the code most significantly IPV4 routing and various RFC’s that are in context
of the project.

 4

1.3 Background

1.3.1 Loadable Linux Kernel Modules

To prevent address spoofing the changes have to be made directly in the Linux kernel which can
be very cumbersome as the kernel has to be rebuilt every time there is a change which is very
time consuming. To solve this problem we will use Linux Kernel Modules which is basically a
chunk of code you add to the Linux Kernel while it is running thus giving it the name loadable
kernel module. They basically form an extension of the Linux Kernel and run in the kernel space
of the Operating System and should not be confused with user space programs that do not have
kernel privileges

Loadable Linux Kernel Modules are thus ideal for writing changes as to how the packet is
handled in the network stack as they have the advantage that kernel does not have to rebuilt as
often. This saves time and minimizes the possibility of introducing an error in rebuilding and
reinstalling the base kernel. Another advantage is that Linux Kernel Modules can save memory,
as they have to be loaded when they are to be used as opposed to the base kernel whose parts
stay loaded all the time in real storage, not just virtual storage.

Linux Kernel Modules are much faster to maintain and debug. What would require a full reboot to
do with the program built into the kernel, can be achieved with a few quick commands with Linux
Kernel Modules. Different parameters can be used or even the code can be changed repeatedly
in rapid succession, without waiting for a boot. Linux Kernel Modules are also not slower than
base kernel modules. Calling either one is simply a branch to the memory location where it
resides [6].

 1.3.2 The Net Filter Facility

The Linux net filter is a framework in the kernel that allows modules to observe and modify
packets as they pass through the protocol stack. Kernel services or modules can register custom
hooks by both protocol family and by the point in packet processing at which the filter is to be
invoked. The facility is currently available for IPv4, IPv6 and DECnet but could be extended to
other protocol families. Each protocol family can provide several processing points in the stack
where a packet of that protocol can be passed to a filter. These points are referred to as hook
points or hook types. Hence, when registering a custom hook, the protocol family and the protocol
specific hook type must be specified. [7]

 5

1.4 Brief Project Description

This project deals with modifying the behavior of the Linux Kernel When modifying the way
certain packets are handled in the Linux Networking Code, we could do the following:

• Find a function that handles all packets we are interested in and then write a new function
call inside that function, for a new function or set of functions that is then called to make
the change effective, we now have to recompile the kernel.(This is a lengthy process).

• ``Netfilter Hooks'' can be thought of as places in the code that are arranged to have most
or all packets of some specific type pass by, and are specifically designed to make it
easy to add code that ``intercepts'' all packets passing through that point.

In fact, Netfilter Hooks have been designed not only to do the above, but also to make it easy to
attach the new code to that location, in the form of a ``Loadable Kernel Module'' (by ``binding'' the
module to a specific hook). A ``Loadable Kernel Module'' is an addition to the kernel (it runs in
kernel space and has kernel privileges) that can be activated (``installed'') and de-activated
(``uninstalled'') without having to recompile the kernel or even rebooting in the Linux Kernel where
we know packets of a certain type would always pass which in our case are the packets that have
to be forwarded and are not meant for the machine itself.

To prevent source address spoofing we maintain a link list comprising of a structure which has
the source address, entry interface and whether the address is valid or not as its components. To
know whether the source address is valid or not whenever a packet of a new flow arrives we first
check whether the source address is already known to us and is valid or invalid, otherwise we
temporarily declare the source address to be invalid and try to validate it using mechanisms
which are explained later in section 3 of the report.

To test our new functionality in the router we had to send packets with spoofed source addresses
ourselves. This however was harder than expected as the new address invalidated the IP and
TCP checksums. The problem was solved by computing the new checksum and we are now able
to send out spoofed source address packets which are not allowed to go through by the router.

1.5 Objective of Project

The purpose of the project is to prevent source address spoofing of IP addresses; this is helpful in
eliminating malicious attacks on the internet by using spoofed IP addresses. IP Source Address
Spoofing is mainly used in denial of service attacks. This works on the theory that a machine
whenever it receives a new connection request from a new IP address allocates resources for the
new connection that is called half open as the SYN-ACK packet is sent back and an ACK packet
is expected. If there are thousands of such requests at the same time from different IP addresses
then the machine would try to allocate resources for all these half open connections and can
consequently crash taking all its offered services down from the internet with it. Thus a malicious
machine if it sends out thousands of such requests all targeted at the same machine but with
different source addresses would then be able to crash the victim machine. This is essentially
done to disable the victim machine or even the entire network. Depending on the nature of
enterprise, it can even disable the entire organization and prevent access by genuine users.
There can be other reasons to spoof source address where the perpetrator of a malicious attack
could change the source address making it harder for the attack to be traced back to the original
source. Thus if the spoofing of IP address is prevented certain kinds of malicious attacks on the
internet can be prevented

 6

2 Background of the Linux Routing Functionality

This section deals with the background needed to understand the modifications done to the Linux
Kernel and how it is achieved. This is meant for the audiences who have very basic knowledge of
the Linux Kernel others can go directly to Section 3

2.1 Loadable Linux Kernel Modules

Linux Kernel Modules which is basically a chunk of code you add to the Linux Kernel while it is
running thus giving it the name loadable kernel module. They basically form an extension of the
Linux Kernel and run in the kernel space of the Operating System and should not be confused
with user space programs that do not have kernel privileges

Loadable Linux Kernel Modules(LKM) are thus ideal for writing changes as to how the packet is
handled in the network stack as they have the advantage that kernel does not have to rebuilt as
often. This saves time and minimizes the possibility of introducing an error in rebuilding and
reinstalling the base kernel. Another advantage is that Linux Kernel Modules can save memory,
as they have to be loaded when they are to be used as opposed to the base kernel whose parts
stay loaded all the time in real storage, not just virtual storage.

Linux Kernel Modules are much faster to maintain and debug. What would require a full reboot to
do with the program built into the kernel, can be achieved with a few quick commands with Linux
Kernel Modules. Different parameters can be used or even the code can be changed repeatedly
in rapid succession, without waiting for a boot. Linux Kernel Modules are also not slower than
base kernel modules. Calling either one is simply a branch to the memory location where it
resides [6].

The basic structure of a LKM has been given below

int init_module()
{

 <Code>

 return 0;
}

void cleanup_module ()
{

}

 7

The LKM is basically a C program but has no main function and has to be declared a module
explicitly by using the statement

#define MODULE

The module has to be compiled by a special command which is

gcc -I/usr/src/linux/include -O2 -D__KERNEL__ -Wall <module_name>.o: <module_name>.c

This command compiles the specified module and makes an output file for the module
<module_name>.o

As the module has no main () function, the starting interface of a module is the init_module
function which is executed whenever the module is first loaded into the kernel memory

This is achieved by giving the following command

/sbin/insmod <module_name>.o

The cleanup_module function is called whenever the module is unloaded from the kernel memory

This is achieved by the following command

/sbin/rmmod <module_name>

There can however be problems with the loading of the module if the kernel version defined in
the /usr/src/linux/MAKEFILE is different from the current kernel thus we have to change the
kernel version in the MAKEFILE and call the make command from /usr/src/linux/ thus ensuring
our version matches and then recompile the module again.

 8

2.2 SK_BUFF Structure

The buffers used by the kernel to manage network packets are referred to as sk_buff in Linux.
The buffers are always have two parts i.e. a fixed size structure of type sk_buff and a dynamic
area which could be fragmented and is large enough to hold the entire data of a single packet.

129 struct sk_buff {
130 /* These two members must be first. */
131 struct sk_buff * next; /* Next buffer in list */
132 struct sk_buff * prev; /* Previous buffer in list */
133
134 struct sk_buff_head * list; /* List we are on */
135 struct sock *sk; /* Socket we are owned by */
136 struct timeval stamp; /* Time we arrived */
137 struct net_device *dev; /* Device we arrived on/are leaving by */

The section below contains the definition of the pointers that belong to the transport, network, and
link headers. They are declared as unions so that only a single word of storage is allocated for
each layer's header pointer.

138
139 /* Transport layer header */
140 union
141 {
142 struct tcphdr *th;
143 struct udphdr *uh;
.
.
.
149 } h;
150
151 /* Network layer header */
152 union
153 {
154 struct iphdr *iph;
155 :
.
.
159 } nh;
160
161 /* Link layer header */
162 union
163 {
164 struct ethhdr *ethernet;
165 unsigned char *raw;
166 } mac;
167

 9

168 struct dst_entry *dst;
169
170 /*
171 * This is the control buffer. It is free to use for every
172 * layer. Please put your private variables there. If you
173 * want to keep them across layers you have to skb_clone()
174 * first. This is owned by whoever has the skb queued ATM.
175 */
176 char cb[48];
177
178 unsigned int len; /* Length of actual data */
179 unsigned int data_len;
180 unsigned int csum; /* Checksum */
181 unsigned char __unused, /* Dead field, */
182 cloned, /* head may be cloned (check refcnt to be sure). */
183 pkt_type, /* Packet class */
184 ip_summed; /* Driver fed us an IP checksum */
185 __u32 priority; /* Packet queueing prty */
186 atomic_t users; /* User count – see datagram.c,tcp.c */
187 unsigned short protocol; /* Packet protocol from driver. (ETH_P_IP etc) */
188 unsigned short security; /* Sec level of packet*/
189 unsigned int truesize; /* Buffer size */
190

These pointers all point into the variable size component of the buffer which actually contains the
packet data. At allocation time head, data, and tail point to the start of the allocated packet data
area and end points to the skb_shared_info structure which begins at next byte beyond the area
available for packet data. A large collection of inline functions defined in include/linux/skbuff.h
may be used in adjustment of data, tail, and len as headers are added or removed. [7]

191 unsigned char *head; /* Head of buffer */
192 unsigned char *data; /* Data head pointer */
193 unsigned char *tail; /* Tail pointer */
194 unsigned char *end; /* End pointer */

The destructor function is called when the last entity that held a pointer to the buffer frees the
buffer.

196 void (*destructor)(struct sk_buff *);
/* Destruct function */
197 #ifdef CONFIG_NETFILTER
198 /* Can be used for communication between hooks. */
199 unsigned long nfmark;
200 /* Cache info */
201 __u32 nfcache;
202 /* Associated connection, if any */
203 struct nf_ct_info *nfct;
207 #endif /*CONFIG_NETFILTER*/
218 }

 10

MAC Header definition

93 struct ethhdr
94 {
95 unsigned char h_dest[ETH_ALEN]; /* dest eth addr */
96 unsigned char h_source[ETH_ALEN]; /* src eth addr */
97 unsigned short h_proto; /* packet type*/
98 };

IP Header

116 struct iphdr {
117 #if defined(__LITTLE_ENDIAN_BITFIELD)
118 __u8 ihl:4,
119 version:4;
120 #elif defined (__BIG_ENDIAN_BITFIELD)
121 __u8 version:4,
122 ihl:4;
125 #endif
126 __u8 tos;
127 __u16 tot_len;
128 __u16 id;
129 __u16 frag_off;
130 __u8 ttl;
131 __u8 protocol;
132 __u16 check;
133 __u32 saddr;
134 __u32 daddr;
136 };

 11

2.3 The Net Filter Facility

As described in [7] The Linux net filter is a framework in the kernel that allows modules to
observe and modify packets as they pass through the protocol stack. This means that the there
exist certain points in the Linux code IPv4 layer where we are sure that packets of a certain type
would always pass. Referring to Figure on page 15 we see that there exist five of these points
where our code can be added, they are namely

• NF_IP_PRE_ROUTING - Every packet coming into this box would pass through here
• NF_IP_LOCAL_IN - Every packet destined for this box would pass through here
• NF_IP_FORWARD - If the packet is not for this and destined for another interface.
• NF_IP_LOCAL_OUT - Packets coming from a local process in the box itself.
• NF_IP_POST_ROUTING - Packets about to hit the wire.

Kernel services or modules which we intend to use can register custom hooks by both protocol
family and by the point in packet processing i.e. the hook at which the filter is to be invoked. The
facility is currently available for IPv4, IPv6 and DECnet but could be extended to other protocol
families. When registering a custom hook, the protocol family and the protocol specific hook type
must be specified.

If the reader does not want advanced knowledge of how hooks are implemented then the rest of
the section can be skipped.

A statically allocated array of lists defined in net/core/netfilter.c holds all the hooks registered for
each protocol and hook types. NF_MAX_HOOKS, the maximum types of hooks a protocol can
support has been defined as 8 in include/linux/netfilter.h.

47 struct list_head nf_hooks[NPROTO][NF_MAX_HOOKS];
32 /* Largest hook number + 1 */
33 #define NF_MAX_HOOKS 8

 12

Diagram Depicting the Hooks and their position in the Code [8]

 13

2.3.1 Defining a NetFilter hook

Each custom hook is defined using the following nf_hook_ops structure. This structure is passed
to
the nf_register_hook function.

44 struct nf_hook_ops
45 {
46 struct list_head list;
47
48 /* User fills in from here down. */
49 nf_hookfn *hook;
50 int pf;
51 int hooknum;
52 /* Hooks are ordered in ascending priority. */
53 int priority;
54 };

Structure elements are used as follows:

• list: links all hooks of a common pm and hooknum into the nf_hooks array

• pf: protocol family (PF_INET i.e. IPV4 address family) of the filter.

• hooknum: the protocol specific hook type (i.e. NF_IP_FORWARD) identifier.

• priority: order of the hook in the list.

• hook: A pointer to the hook function.

Its prototype is as follows:

38 typedef unsigned int nf_hookfn(unsigned int hooknum,
39 struct sk_buff **skb,
40 const struct net_device *in,
41 const struct net_device *out,
42 int (*okfn)(struct sk_buff *));
43

Some standard priorities are shown below.

52 enum nf_ip_hook_priorities {
53 NF_IP_PRI_FIRST = INT_MIN,
54 NF_IP_PRI_CONNTRACK = -200,
55 NF_IP_PRI_MANGLE = -150,
56 NF_IP_PRI_NAT_DST = -100,
57 NF_IP_PRI_FILTER = 0,
58 NF_IP_PRI_NAT_SRC = 100,

 14

59 NF_IP_PRI_LAST = INT_MAX,
60 };

The nf_register_hook() function defined in net/core/netfilter.c adds the nf_hook_ops structure that
defines a custom hook to the appropriate list based on the protocol family and filter type.

Since the list is ordered by ascending priority values, invocation order is lowest numerical value
first.

60 int nf_register_hook(struct nf_hops *reg)
61 {
62 struct list_head *i;
63
64 br_write_lock_bh(BR_NETPROTO_LOCK);
65 for (i = nf_hooks[reg->pf][reg->hooknum].next;
66 i != &nf_hooks[reg->pf][reg->hooknum];
67 i = i->next)
68 {if (reg->priority <((struct nf_hook_ops *)i)->priority)
69 break;
70 }
71 list_add(®->list, i->prev);
72 br_write_unlock_bh(BR_NETPROTO_LOCK);
73 return 0;
74 }

2.3.2 IP Packet Transmission through the Netfilter Layer

From ip_build_xmit() or ip_build_xmit_slow(), the IP packet is pushed to the device/netfilter layer
using the NF_HOOK macro defined in include/linux/netfilter.h. Parameters passed include the
output device to be used and the final output function to be invoked on successful verdict from all
the hooks in the list. The hook type is NF_IP_LOCAL_OUT. The input device is set to NULL,
since the packet originated on the local host.

713err=NF_HOOK(PF_INET,NF_IP_LOCAL_OUT,skb,NULL,rt-> u.dst.dev ,output_maybe_
reroute);

This macro translates to a call to the nf_hook_slow() function if the netfilter debug option is
defined or if there are hooks/filters set for the specific protocol family and hook type. Otherwise it
simply passes the sk_buff directly to the ok function.

 15

117 /* This is gross, but inline doesn't cut it for avoiding the
118 function call in fast path: gcc doesn't inline (needs value tracking?). --RR */
119 #ifdef CONFIG_NETFILTER_DEBUG
120 #define NF_HOOK nf_hook_slow
121 #else
122 #define NF_HOOK(pf, hook, skb, indev, outdev, okfn) \
123 (list_empty(&nf_hooks[(pf)][(hook)]) \
124 ? (okfn)(skb) \
125 : nf_hook_slow((pf), (hook), (skb),
(indev), (outdev), (okfn)))
126 #endif

When the net filter facility is enabled and the look list is non-empty, this macro invokes the
nf_hook_slow() function. The nf_hook_slow() function is defined in net/core/netfilter.c, it's task is
to invoke each hook in the specified list, and based on the verdict from the hooks, it either passes
the packet to the okfn or drops the packet.

450 int nf_hook_slow(int pf, unsigned int hook,struct sk_buff *skb,
451 struct net_device *indev,
452 struct net_device *outdev,
453 int (*okfn)(struct sk_buff *))
454 {
455 struct list_head *elem;
456 unsigned int verdict;
457 int ret = 0;

For a non-linear sk_buff each fragment's size, offset and page address are stored in the
skb_frag_struct array. If the skb is non-linear (i.e. skb->data_len!=0), skb_linearize() is called to
reorganized all the data into one linear buffer.

459 /* This stopgap cannot be removed until all the hooks are audited. */
460 if (skb_is_nonlinear(skb) && skb_linearize(skb, GFP_ATOMIC) != 0) {
461 kfree_skb(skb);
462 return -ENOMEM;
463 }

After ensuring the sk_buff is linear, nf_hook_slow() continues. The ip_summed field in the sk_buff
was initialized to 0 (CHECKSUM_NONE) during creation. The objective of this code block is

 16

unclear. It should be remembered though that this nf_hook_slow() is called for both input and
output processing.

464 if (skb->ip_summed == CHECKSUM_HW) {
465 if (outdev == NULL) {
466 skb->ip_summed = CHECKSUM_NONE;
467 } else {
468 skb_checksum_help(skb);
469 }
470 }
471
472 /* We may already have this, but read-locks nest anyway */
473 br_read_lock_bh(BR_NETPROTO_LOCK);
474
475 #ifdef CONFIG_NETFILTER_DEBUG
476 if (skb->nf_debug & (1 << hook)) {
477 printk("nf_hook: hook %i already set.\n",hook);
478 nf_dump_skb(pf, skb);
479 }
480 skb->nf_debug |= (1 << hook);
481 #endif
482

Here the function nf_iterate() is called to execute all the hooks defined for this protocol family and
hook type.

483 elem = &nf_hooks[pf][hook];
484 verdict = nf_iterate(&nf_hooks[pf][hook],&skb, hook, indev, outdev, &elem, okfn);

On return to nf_hook_slow(), actions are based on the verdict. A verdict of NF_QUEUE for an IP
packet this results in a series of function calls leading to the ipq_enqueue() function defined in
net/ipv4/netfilter/ip_queue.c.

486 if (verdict == NF_QUEUE) {
487 NFDEBUG("nf_hook: Verdict = QUEUE.\n");
488 nf_queue(skb, elem, pf, hook, indev, outdev,okfn);
489 }

If NF_ACCEPT is the verdict from all hooks, the output_maybe_reroute() function which was
passed into nf_hook_slow() as the okfn() is invoked with the sk_buff as the parameter. If the
packet is to be dropped kfree_skb() is called.

 17

491 switch (verdict) {
492 case NF_ACCEPT:
493 ret = okfn(skb);
494 break;
496 case NF_DROP:
497 kfree_skb(skb);
498 ret = -EPERM;
499 break;
500 }
502 br_read_unlock_bh(BR_NETPROTO_LOCK);
503 return ret;
504 }

2.3.3 Iterating through the hook chain

The nf_iterate() function is defined in net/core/netfilter.c

340 static unsigned int nf_iterate(struct list_head *head,
341 struct sk_buff **skb,
342 int hook,
343 const struct net_device *indev,
344 const struct net_device*outdev,
345 struct list_head **i,
346 int (*okfn)(struct sk_buff *))
347 {

For each hook called this loop is iterated once

348 for (*i = (*i)->next; *i != head; *i = (*i)->next) {
349 struct nf_hook_ops *elem =
(struct nf_hook_ops *)*i;

The value returned by the hook function determines the action taken by the switch statement. An
immediate return, possibly aborting the send, is made if the value returned is NF_QUEUE,
NF_STOLEN, or NF_DROP. If NF_REPEAT or NF_ACCEPT is returned the ‘for’ loop continues.

350 switch (elem->hook(hook, skb, indev, outdev,okfn))

 18

{
351 case NF_QUEUE:
352 return NF_QUEUE;
353
354 case NF_STOLEN:
355 return NF_STOLEN;
356
357 case NF_DROP:
358 return NF_DROP;
359
360 case NF_REPEAT:
361 *i = (*i)->prev;
362 break;
363
364 #ifdef CONFIG_NETFILTER_DEBUG
365 case NF_ACCEPT:
366 break;
367
368 default:
369 NFDEBUG("Evil return from %p(%u).\n",
370 elem->hook, hook);
371 #endif
372 }
373 }

If all the hook functions return NF_ACCEPT, then NF_ACCEPT is returned to nf_hook_slow.

374 return NF_ACCEPT;
375 }

The output_maybe_reroute() function

If the packet is accepted for transmission by nf_hook_slow, the okfn(), output_maybe_reroute(),
defined in net/ipv4/ip_output.c is called. It simply passes control to the output function associated
with the dst structure that is presently bound to the sk_buff.

113 static inline int
114 output_maybe_reroute(struct sk_buff *skb)
115 {
116 return skb->dst->output(skb);
117 }

 19

The pointer skb->dst refers to the route cache element associated with this packet's source and
destination. In ip_route_output_slow(), rt->u.dst->output was set to ip_output() which is defined in
net/ipv4/ip_output.c.

255 int ip_output(struct sk_buff *skb)
256 {
257 #ifdef CONFIG_IP_ROUTE_NAT
258 struct rtable *rt = (struct rtable*)skb->dst;
259 #endif
260
261 IP_INC_STATS(IpOutRequests);
262
263 #ifdef CONFIG_IP_ROUTE_NAT
264 if (rt->rt_flags&RTCF_NAT)
265 ip_do_nat(skb);
266 #endif
267
268 return ip_finish_output(skb);
269 }

The ip_finish_output() function

The ip_finish_output() function sets skb->dev to the device associated with the route's associated
output device structure and the protocol type to ETH_P_IP. This indicates that the value 0x8000
must represent an IP packet even if the output device is not an ethernet device.

183 __inline__ int ip_finish_output(struct sk_buff *skb)
184 {
185 struct net_device *dev = skb->dst->dev;
186
187 skb->dev = dev;
188 skb->protocol = __constant_htons(ETH_P_IP);

Next, the NF_HOOK macro is again invoked. This macro expands to nf_hook_slow() and invokes
all the net filters defined for PF_INET at the NF_IP_POST_ROUTING level. If the verdict from all
filters is NF_ACCEPT, the okfn(), ip_finish_output2() is called as before.

189
190 return NF_HOOK(PF_INET, NF_IP_POST_ROUTING,
skb, NULL, dev, ip_finish_output2);
192 }

 20

The ip_finish_output2() function

The ip_finish_output2() function is defined in net/ipv4/ip_output.c .

159 static inline int ip_finish_output2(struct sk_buff *skb)
160 {
161 struct dst_entry *dst = skb->dst;
162 struct hh_cache *hh = dst->hh;
163
164 #ifdef CONFIG_NETFILTER_DEBUG
165 nf_debug_ip_finish_output2(skb);
166 #endif /*CONFIG_NETFILTER_DEBUG*/
167

There are two mechanisms by which calls to the link layer may be made. If the dst_entry has an
hh_cache pointer then the hh_cache entry must contain both the hardware header itself and a
pointer to an output function at the device / link layer. The output function is always set to
dev_queue_xmit(). If there is no hh pointer but there is a neighbor pointer, then the neighbor
structure must have an output function pointer. The output function of the neighbour structure is
set to neigh_resolve_output() if the network device needs a hardware header. Otherwise (for a
loopback, point to point, or virtual device) it set to invoke dev_queue_xmit() by the
arp_constructor() function that is called when each neighbor structure is created.

168 if (hh) {
169 read_lock_bh(&hh->hh_lock);
170 memcpy(skb->data - 16, hh->hh_data, 16);
171 read_unlock_bh(&hh->hh_lock);
172 skb_push(skb, hh->hh_len);
173 return hh->hh_output(skb);
174 } else if (dst->neighbour)
175 return dst->neighbour->output(skb);
176

If there is no hardware header structure and no neighbor structure available, then there is no way
to send the packet and it must be dropped. The net_ratelimit() function is used to limit the number
of printk's generated to not more than 1 every 5 seconds to avoid flooding the syslog in case
something is badly amiss in the network setup.

177 if (net_ratelimit())

 21

178 printk(KERN_DEBUG "ip_finish_output2:
No header cache and no neighbour!\n");
179 kfree_skb(skb);
180 return -EINVAL;
181 }

2.4 Connection Tracking

Connection tracking is done to let the net filter framework know the state of a specific connection.

Connection tracking is done either in the NF_IP_PREROUTING hook or the NF_IP_LOCAL_OUT
hook for the packets generated on the machine itself. It is basically implemented to manage
individual connections and it serves to allocate IP packets as incoming, outgoing or forwarded to
already existing connections. The connections are maintained mainly for the packets belonging to
the TCP protocol but the UDP packets are also taken care of.

Connection tracking has been implemented as a separate module and has to be loaded for it to
work with the project. The commands to load the connection tracking module are given below.

echo -en "ip_conntrack, " /sbin/insmod ip_conntrack

echo -en "ip_conntrack_ftp, " /sbin/insmod ip_conntrack_ftp

echo -en "ip_conntrack_irc, " /sbin/insmod ip_conntrack_irc

Connection tracking has four states

• NEW
• ESTABLISHED
• RELATED
• INVALID

NEW

This state means that the packet is of a new connection and it is most probably the
connection establishing packet that is the SYN packet and it is obviously going from the
source to the destination

ESTABLISHED

This state means that traffic has passed in both directions and now the packets from that
connection would be matched. The requirement to get into the ESTABLISHED state is
that client requests from the server and gets a reply in return

 22

RELATED

A connection is in the RELATED state when it is expected that it is spawned from an
already ESTABLISHED connection. E.g.: Thread connections that the server spawns
after the initial connection to the well known port are considered to be RELATED to the
initial connection

INVALID

This state is used in the case where the packet cannot be identified or it does not have
any state. This may be caused due to several factors like ICMP packets which are
connectionless or sometimes even UDP packets

The conntrack module keeps the states in the memory and only releases a state if certain
conditions are met. They are managed in a hash table where a linked list is used to resolve
collisions. An entry in this table is of type ip_conntrack_tuple_hash and contains a reverse pointer
to the ip_conntrack structure of that connection in addition to the actual address information i.e.
tuple which has the source and destination addresses and protocol specific information which
includes port numbers

A more detailed implementation has been given below which can be skipped in the context of the
project.

The conntrack module has been implemented in the following files

 /include/linux/netfilter_ipv4/

ip_conntrack.h
ip_conntrack_core.h
ip_conntrack_ftp.h
ip_conntrack_helper.h
ip_conntrack_icmp.h
ip_conntrack_irc.h
ip_conntrack_protocol.h
ip_conntrack_tcp.h
ip_conntrack_tuple.h
ip_conntrack_core.c
ip_conntrack_ftp.c
ip_conntrack_irc.c
ip_conntrack_proto_generic.c
ip_conntrack_proto_icmp.c
ip_conntrack_proto_tcp.c
ip_conntrack_proto_udp.c
ip_conntrack_standalone.c

 23

TUPLE

A tuple is a structure that contains information that identifies it to a connection. Thus if two
packets have the same tuple, they are in the same connection.

 union ip_conntrack_manip_proto
 {
 u_int16_t all; //Add other protocols here
 struct
 {
 u_int16_t port;
 } tcp;
 struct
 {

 u_int16_t port;
 } udp;

 struct
{

 u_int16_t id;
} icmp;

 }; // ip_conntrack_tuple.h

//The manipulable part of the tuple.

struct ip_conntrack_manip
{
 u_int32_t ip;
 union ip_conntrack_manip_proto u;
};

// ip_conntrack_tuple.h

//This contains the information to distinguish a connection.

struct ip_conntrack_tuple
{
 struct ip_conntrack_manip src;
 struct {
 u_int32_t ip;

 union
 {
 u_int16_t all; //Add other protocols here.
 struct { u_int16_t port; } tcp;

 24

 struct { u_int16_t port; } udp;
 struct { u_int8_t type, code; } icmp;
 } u;
 uint16_t protonum; //The protocol.
 } dst;
};

Hash Functions of Connection Track

struct ip_conntrack_tuple_hash
{
struct list_head list;
struct ip_conntrack_tuple tuple;
struct ip_conntrack *ctrack;
// this == &ctrack->tuplehash[DIRECTION(this)].
};
struct ip_conntrack
{
……………
struct ip_conntrack_tuple_hash tuplehash[IP_CT_DIR_MAX];
//These are my tuples; original and reply
volatile unsigned long status;
// Have we seen traffic both ways yet
struct timer_list timeout;
 //Timer function; drops refcnt when it goes off.
struct ip_conntrack_expect expected;
/* If we're expecting another related connection, this will be in expected linked list */
struct nf_ct_info master;
/* If we were expected by another connection, this will be it */
…………….
}

static inline u_int32_t

hash_conntrack(const struct ip_conntrack_tuple *tuple)
{
…….
//
return (ntohl(tuple->src.ip + tuple->dst.ip
+ tuple->src.u.all + tuple->dst.u.all
+ tuple->dst.protonum)
+ ntohs(tuple->src.u.all))
% ip_conntrack_htable_size;
}

Getting Connection Information

 25

There is an enumerated type in the conntrack module which tells us the state of the connection
when we call the function ip_conntrack_get()

enum ip_conntrack_info
{
 /* Part of an established connection (either direction). */
 IP_CT_ESTABLISHED,
 IP_CT_RELATED,
 IP_CT_NEW,
 IP_CT_IS_REPLY, /* >=this indicates reply direction */
 IP_CT_NUMBER = IP_CT_IS_REPLY * 2 - 1
/* Number of distinct IP_CT types (no NEW in reply dirn). */
};

IP_CT_NEW

The packet is trying to create a new connection obviously from source to destination

IP_CT_ESTABLISHED

The packet is part of an established connection from source to destination

IP_CT_ESTABLISHED+ IP_CT_IS_REPLY

The packet is part of an established connection from destination to source

IP_CT_RELATED

The packet is related to the connection from source to destination

IP_CT_RELATED + IP_CT_IS_REPLY

The packet is related to the connection and is from destination to source

 26

2.5 Routing Tables

There are three basic routing tables in Linux as described in [9]. These are

• Routing Cache or Multicast
• Forwarding Information Base Table (FIB)
• Neighbor Table

The Neighbor Table

The Neighbor Table whose structure is shown below contains information about computers that
are physically linked with the host computer. Entries are not persistent; this table may contain no
entries or may contain as many entries as there are computers physically connected to its
network. Entries in the table are actually other table structures which contain addressing, device,
protocol, and statistical information. In this diagram we see that the structure neighbor table is a
pointer to a list of neighbor tables; each table contains a set of general functions and data and a
hash table (A table in which keys are mapped to specific positions by a function that gives these
positions) of specific information about a set of neighbors. This is a very detailed, low level table
containing specific information such as the approximate transit time for messages, queue sizes,
device pointers, and pointers to device functions.

Neighbor Table (struct neigh_table) Structure - this structure (a list element) contains common
neighbor information and table of neighbor data and pneigh data (which presumably describes a
proxy neighbor). All computers connected through a single type of connection will be in the same
table.

• struct neigh_table *next - pointer to the next table in the list.
• struct neigh_parms parms - structure containing message travel time, queue length, and

statistical information; this is actually the head of a list.
• struct neigh_parms *parms_list - pointer to a list of information structures regarding

neighbors.
• struct neighbour *hash_buckets[] - hash table of neighbors associated with this table
• struct pneigh_entry *phash_buckets[] - hash table of structures containing device pointers

and keys of proxy neighbors (presumably)
• Other fields include timer information, function pointers, locks, and statistics.

Neighbor Data (struct neighbour) Structure - these structures contain the specific information
about each neighbor.

• struct device *dev - pointer to the device or interface that is connected to this neighbor.
• __u8 nud_state - status flags; values can be incomplete, reachable, stale, etc.; also

contains state information for permanence and ARP use.
• struct hh_cache *hh - pointer to cached hardware header for transmissions to this

neighbor.
• struct sk_buff_head arp_queue - pointer to ARP packets for this neighbor.
• Other fields include list pointers, function (table) pointers, and statistical information.

 27

Neighbor Table data structure relationships.

The Forwarding Information Base

The Forwarding Information Base (FIB) is the most important routing structure in the kernel; it is a
complex structure that contains the routing information needed to reach any valid IP address by
its network mask. Essentially it is a large table with general address information at the top and
very specific information at the bottom. The IP layer enters the table with the destination address
of a packet and compares it to the most specific netmask to see if they match. If they do not, IP
goes on to the next most general netmask and again compares the two. When it finally finds a
match, IP copies the route to the distant host into the routing cache and sends the packet on its
way.

A fib_table structure forms the basis for a routing table. This structure includes a pointer to an
fn_zone structure for each potential prefix length (0 to 32 bits). All routing table entries with the
same prefix length are allocated to a specific fn_zone structure (there is one zone for each subnet
mask). The fn_zone structure uses an additional hash table to store the individual entries, each
represented by a fib_node structure. The hash functions used for this purpose also uses the
entry’s network prefix. If several routing table entries have the same hash value, then the
corresponding fib_node structures are linked in a linear list. Ultimately, the actual data of an entry
is not in the fib_node structure itself, but in a fib_info structure referenced in the former structure.

 28

In the diagram given below we can see that the netmask table would have one entry for each
potential netmask out of which we use certain netmasks. These entries would then point to the
zone entry which is simply the subnet masks which we know exist on the network. This zone
structure in turn points to one or more fib_node structures which are simply where the routing
instruction for each known network is stored with additional information needed by the network.In
routing the longest subnet mask is checked first progressively going lower and each entry is then
checked with a hash entry made with the source address, destination address and the specific
entry interface.

 Forwarding Information Base (FIB)

More specific implementation of the FIB has been given below which can however be skipped in
the context of this project.

struct fib_table *local_table, *main_table - these global variables are the access points to the FIB
tables; they point to table structures that point to hash tables that point to zones. The contents of
the main_table variable are in /proc/net/route.

FIB Table fib_table Structure - include/net/ip_fib.h - these structures contain function jump tables
and each point to a hash table containing zone information. There is usually only one or two of
these.

• int (*tb_functions)() - pointers to table functions (lookup, delete, insert, etc.) that are set
during initialization to fn_hash_function().

• unsigned char tb_data[0] - pointer to the associated FIB hash table (despite its
declaration as a character array).

• unsigned char tb_id - table identifier; 255 for local_table, 254 for main_table.
• unsigned tb_stamp

Netmask Table fn_hash Structure - net/ipv4/fib_hash.c - these structures contain pointers to the
individual zones, organized by netmask. (Each zone corresponds to a uniquely specific network
mask.) There is one of these for each FIB table (unless two tables point to the same hash table).

 29

• struct fn_zone *fn_zones[33] - pointers to zone entries (one zone for each bit in the mask;
fn_zone[0] points to the zone for netmask 0x0000, fn_zone[1] points to the zone for
0x8000, and fn_zone[32] points to the zone for 0xFFFF.

• struct fn_zone *fn_zone_list - pointer to first (most specific) non-empty zone in the list; if
there is an entry for netmask 0xFFFF it will point to that zone, otherwise it may point to
zone 0xFFF0 or 0xFF00 or 0xF000 etc.

Network Zone fn_zone Structure - net/ipv4/fib_hash.c - these structures contain some hashing
information and pointers to hash tables of nodes. There is one of these for each known netmask.

• struct fn_zone *fz_next - pointer to the next non-empty zone in the hash structure (the
next most general netmask; e.g., fn_hash- > fn_zone[28]- > fz_next might point to
fn_hash- > fn_zone[27]).

• struct fib_node **fz_hash - pointer to a hash table of nodes for this zone.
• int fz_nent - the number of entries (nodes) in this zone.
• int fx_divisor - the number of buckets in the hash table associated with this zone; there

are 16 buckets in the table for most zones (except the first zone - 0000 - the loopback
device).

• u32 fz_hashmask - a mask for entering the hash table of nodes; 15 (0x0F) for most
zones, 0 for zone 0).

• int fz_order - the index of this zone in the parent fn_hash structure (0 to 32).
• u32 fz_mask - the zone netmask defined as ~((1<<(32-fz_order))-1); for example, the first

(zero) element is 1 shifted left 32 minus 0 times (0x10000), minus 1 (0xFFFF), and
complemented (0x0000). The second element has a netmask of 0x8000, the next
0xC000, the next 0xE000, 0xF000, 0xF800, and so on to the last (32d) element whose
mask is 0xFFFF.

Network Node Information fib_node Structure - net/ipv4/fib_hash.c - these structures contain the
information unique to each set of addresses and a pointer to information about common features
(such as device and protocols); there is one for each known network (unique
source/destination/TOS combination).

• struct fib_node *fn_next - pointer to the next node.
• struct fib_info *fn_info - pointer to more information about this node (that is shared by

many nodes).
• fn_key_t fn_key - hash table key - the least significant 8 bits of the destination address

(or 0 for the loopback device).
• Other fields include specific information about this node (like fn_tos and fn_state).

Network Protocol Information (fib_info) Structure - include/net/ip_fib.h - these structures contain
protocol and hardware information that are specific to an interface and therefore common to
many potential zones; several networks may be addressable through the same interface. There is
one of these for each interface.

 30

• fib_protocol - index to a network protocol (e.g., IP) used for this route.
• struct fib_nh fib_nh[0] - contains a pointer to the device used for sending or receiving

traffic for this route.
• Other fields include list pointers and statistical and reference data (like fib_refcnt and

fib_flags.

 Forwarding Information Base (FIB) data relationships

 31

The Routing Cache

Routing Cache conceptual organization

The routing cache is the fastest method Linux has to find a route; As can be seen in the diagram
above Linux keeps every route that is currently in use or has been used recently in a hash table
(A table in which keys are mapped to specific positions by a function that gives these positions)
which has a maximum of 256 buckets (entries) and stores in it a pointer according to the
combination of the source address, destination address and incoming interface. When IP needs a
route, it goes to the appropriate hash bucket which is found using the hash function and searches
the chain (linked list) of cached routes until it finds a match, then sends the packet along that path
which the routing information node gives to IP. Routes are chained in order, most frequently used
first, and have timers and counters that remove them from the table when they are no longer in
use. If the routing cache is unable to provide the route the FIB table is looked up which has been
explained before

A more detailed explanation of the routing cache has been given below for the audience which
wants to study it further.

struct rtable *rt_hash_table[RT_HASH_DIVISOR] - this global variable contains 256 buckets of
(pointers to) chains of routing cache (rtable) entries; the hash function combines the source
address, destination address, and TOS to get an entry point to the table (between 0 and 255).
The contents of this table are listed in /proc/net/rt_cache.

Routing Table Entry (rtable) Structure - include/net/route.h - these structures contain the
destination cache entries and identification information specific to each route.

• union < struct dst_entry dst; struct rtable* rt_next) > u - this is an entry in the table; the
union structure allows quick access to the next entry in the table by overusing the rtable's
next field to point to the next cache entry if required.

• __u32 rt_dst - the destination address.
• __u32 rt_src - the source address.
• rt_int iif - the input interface.

 32

• __u32 rt_gateway - the address of the neighbor to route through to get to a destination.
• struct rt_key key - a structure containing the cache lookup key (with src, dst, iif, oif, tos,

and scope fields)
• Other fields contain flags, type, and other miscellaneous information.

Destination Cache (dst_entry) Structure - include/net/dst.h - these structures contain pointers to
specific input and output functions and data for a route.

• struct device *dev - the input/output device for this route.
• unsigned pmtu - the maximum packet size for this route.
• struct neighbor *neighbor - a pointer to the neighbor (next link) for this route.
• struct hh_cache *hh - a pointer to the hardware header cache; since this is the same for

every outgoing packet on a physical link, it is kept for quick access and reuse.
• int (*input)(struct sk_buff*) - a pointer to the input function for this route (typically

tcp_recv()).
• int (*output)(struct sk_buff*) - a pointer to the output function for this route (typically

dev_queue_xmit()).
• struct dst_ops *ops - a pointer to a structure containing the family, protocol, and check,

reroute, and destroy functions for this route.
• Other fields hold statistical and state information and links to other routing table entries.

Neighbor Link (neighbor) Structure - include/net/neighbor.h - these structures, one for each host
that is exactly one hop away; contain pointers to their access functions and information.

• struct device *dev - a pointer to device that is physically connected to this neighbor.
• struct hh_cache *hh - a pointer to the hardware header that always precedes traffic sent

to this neighbor.
• int (*output)(struct sk_buff*) - a pointer to the output function for this neighbor (typically

dev_queue_xmit()?).
• struct sk_buff_head arp_queue - the first element in the ARP queue for traffic concerning

this neighbor - incoming or outgoing?
• struct neigh_ops *ops - a pointer to a structure that containing family data and and output

functions for this link.
• Other fields hold statistical and state information and references to other neighbors.

 33

Updating Routing Information

Linux only updates routing information when necessary, but the tables change in different
manners. The routing cache is the most volatile, while the FIB usually does not change at all.

The neighbor table changes as network traffic is exchanged. If a host needs to send something to
an address that is on the local subnet but not already in the neighbor table, it simply broadcasts
an ARP request and adds a new entry in the neighbor table when it gets a reply. Periodically
entries time out and disappear; this cycle continues indefinitely. The kernel handles most
changes automatically.

The FIB on most hosts and even routers remains static; it is filled in during initialization with every
possible zone to route through all connected routers and never changes unless one of the routers
goes down. Changes have to come through external ioctl() calls (Input Output Control) to add or
delete zones.

The routing cache changes frequently depending on message traffic. If a host needs to send
packets to a remote address, it looks up the address in the routing cache and FIB if necessary
and sends the packet off through the appropriate router. On a host connected to a LAN with one
router to the Internet, every entry will point to either a neighbor or the router, but there may be
many entries that point to the router. The entries are created as connections are made and time
out quickly when traffic to that address stops flowing. Everything is done with IP level calls to
create routes and kernel timers to delete them.

 34

3 System Functional Specification

3.1 Functions Performed

The functions performed by the system are

• Check if incoming packet is of a new connection or an already established connection
• If the packet is of a new connection then it is checked whether the incoming source

address is already known and valid
• If the source address is already known and valid then the packet is deemed to be

acceptable
• If the source address is already known and invalid then the packet is deemed

unacceptable and the net filter is informed to drop the packet
• If the source address is not known then an echo packet is sent to the original source
• If the echo packet is replied then the source is deemed to be valid and further packets

are allowed to go through.
• If the packet is of an already established connection then it is checked whether the

source address is valid and if it is then it is allowed to go through

3.2 External and Internal Limitations and Restrictions

The external restrictions are

• IP addresses of the various interfaces of the router cannot be known directly thus to
work around it incoming packets have to be caught and their destination addresses
have to be extracted along with their devices.

• No User Space functions can be accessed from the kernel thus only internal
functions of the kernel are used.

 The External Limitations are

• If the spoofing source and the real source exist on the same subnet then the packets
are allowed to go through. This is an open research problem and work is still being
done to solve it

• If the host computer is in the unlikely case running a firewall that blocks ICMP
packets then even a real source could be declared invalid. This limitation is resolved
in the fact that this module works intra LAN where there are no firewalls only on the
edges

 35

4 System Performance Requirements

4.1 Efficiency

The module has to be extremely efficient as the packet in the network stack cannot be delayed
for too long. If the delay is too large in the module it can lead to timeout in the original source
leading to packet loss and also slowing down the entire connection according to the
implementation of the TCP protocol. Thus connection tracking has been made part of the design
as in the implementation only one comparison has to be made that the packet is of a new
connection or from an already established connection. There is also the feature of conditionally
accepting the packet as further packets cannot be held up while we wait for the
ICMP_ECHOREPLY packet of the source which we are probing.

4.2 Reliability

4.2.1 Description of Reliability Measures and Failure Rate

Consistency across the various packets has to be maintained that is if the source address once
declared invalid then no packet of that source address should be able to pass through. It should
also be precisely be able to declare if the packet is valid or invalid as a genuine source should not
have its service denied on the other hand if an invalid source address is allowed to go through
then the basic purpose of the module has been defeated.

The software should have a meantime between failures rate as it is part of the kernel and if it fails
then the entire kernel crashes bringing down the entire Operating System with it.

4.3 Maintainability

The Module once loaded does not needed further maintenance and can run indefinitely as part of
the kernel. It is integrated into the kernel and does not need any further interference from the
user.

 36

4.4 Modifiability

The project can be easily modified and recompiled due to the inherent properties of the kernel
modules which were chosen as the medium of modification of the kernel which are namely

• The Kernel is not recompiled as often. This saves time and minimizes the possibility of
introducing an error in rebuilding and reinstalling the base kernel.

• Linux Kernel Modules save memory, as they have to be loaded when they are to be used

as opposed to the base kernel whose parts stay loaded all the time in real storage, not
just virtual storage.

• Linux Kernel Modules are much faster to maintain and debug.

• Linux Kernel Modules are also not slower than base kernel modules.

4.5 Portability

As the module has been written for the Linux Platform, It will only be able to work with the Linux
operating system and not any other operating system. The most common cause of this is the
case where the operating system is closed source i.e. the source code of the operating system is
not available. It can however work across the various ‘Flavors of Linux’ as the various
implementations of the Linux platform are called. The software has been tested across the
various implementations of the Linux – 2.4 kernels but portability across the current kernels
available which are still in development and currently unstable is not guaranteed as the procedure
of implementation of Linux Kernel Modules has been changed in the later kernels

 37

5 System Design Overview

5.1 System Data Flow Diagrams

Data Flow Diagram for the prev_addr_spoof function

Check neighbor
table if the
packet is from a
neighbor or not

Packet is declared
valid

If Packet is
from a
neighbor

Idle waiting
for a packet

Check packet if
from a new
connection or from
an old connection

 Packet Arrives Hook Function
prev_address_spoof

New
Connection

Check address
known or not

Packet is not
from a
neighbor

Address not
known

Packet cloned

Already
established
connection and
original direction

Check Packet if
from an already
known and valid
source address

Address Known

Return
NF_ACCEPT
to hook

Send
ICMP_ECHO
REQUEST
packet

Packet with invalid
source address

Return NF_DROP to
hook

Original packet

Cloned packet

 38

Data Flow Diagram for the get_local_add function

Check Source
List if incoming
interface and IP
address exist

If already
exists

Idle waiting
for a packet

Check Source List
if the source list
exists

 Packet Arrives Hook Function
get_local_add

Exists
Allocate Memory
for new node

Does not exist

Traverse List

Update the List

Does not exist
Allocate Memory
for new node and
List

Return
NF_ACCEPT
to hook

 39

Data Flow Diagram for the icmp_check function

Check if the packet
is carrying the
message
ICMP_ECHOREPLY

If it is not
carrying the
message

Idle waiting
for a packet

Check if the
packet is of the
ICMP protocol

 Packet Arrives Hook Function
icmp_check

ICMP packet
Check if Valid
Source List
Exists

Does not exist

Exists and then
Traverse List

Update the List

It is not an ICMP
packet

Return
NF_ACCEPT
to hook Valid Source

List does not
exist

 40

5.2 System Internal Data Structure

The systems internal data structures would comprise of two lists, one list that stores the valid and
invalid source addresses through the use of a counter and the device they came from along with
a counter that specifies how long we are willing to wait for the reply of the
ICMP_ECHOREQUEST packet. The other list would comprise of the interface names and the IP
addresses that are associated with that IP address.

5.3 Description of System Operation

The project is basically designed to rectify the fault that source addresses are not checked to be
valid or not. This is done by using Loadable Linux Kernel Modules, Net Filter hooks and
Connection Tracking (explained in detail in section 2). There are two lists maintained by the
system The first list stores all the different source addresses of the packets that have been seen
by this router, This list also stores information of the source address i.e. the device where the
packet came from and whether they are valid or not thus for every new connection that is seen
this list is traversed for the proper source address and validated. If it is not valid then the packets
are blocked and no further packets are allowed to go through. If the source address is seen for
the first time then the address is first checked with the neighbor table i.e. the table which stores
the machines which are directly connected to this router to verify whether it is a neighbor or not if
it is not an neighbor then the address is stored in the master list with the device and a temporary
value that it is not valid but is in the process of being verified. For verification an
ICMP_ECHOREQUEST is sent to the original source using the second list which stores the
various IP addresses of the router and the devices that are associated with these IP addresses.
This list is maintained by a function registered in the NF_IP_LOCAL_IN hook of the net filter
facility which extracts the destination address from the incoming packets and the device from
which the packet has come from. This is all done in a function that is registered in the
NF_IP_FORWARD hook of the net filter facility. If the source address of the packet is valid then
the original source of the new connection packet would reply back by an ICMP packet that has
the code set as ICMP_ECHOREPLY which would then be caught by another function that has
also been registered in the NF_IP_LOCAL_IN hook, This function would then update the source
address list and change the source address from being invalid to valid and discard the temporary
invalid status This would be done if and only if the packet has arrived from the device that the
original packet came from. Thus as proved by testing source address spoofing can be
successfully eliminated.

 41

5.4 Implementation Languages

The language used in the implementation would be C as the source code of Implementation of
the Linux Kernel – 2.4 is written in the C language thus to use the existing functionality of the
kernel i.e. to port our code into the hook of the net filter and extend the functionality of the existing
kernel, C language is the language of choice.

5.5 Required Support Software

The required support software that is needed is the Linux 2.4 Kernel as the module is an
extension of the above kernel and the Linux Platform to run the module

 42

6 System Data Structure Specifications

6.1 Other User Input Specification

6.1.1 Identification of Input Data

The input of the program would be the SK_BUFF at the IP layer i.e. the packet structure with the
pointers to the packet itself as passing of the entire packet will occupy a huge memory space thus
the pointer to the structure is passed through which we can access the packet data itself.

6.1.2 Source of Input Data

The source of the input data would be the hook calling function nf_iterate() which goes over the
list of hook functions for that particular hook arranged according to ascending values of priority
and passes to each of them a pointer of the SK_BUFF structure

6.1.3 Input Device

The input device is the interface receiving the packet from the network at the physical level

6.1.4 Data Format

Data would be received as a pointer to a structure known as SK_BUFF thus its format would be
of a structure type and would have to be accessed accordingly

 43

6.2 Other User Output Specification

6.2.1 Identification of Output Data

The output of the module would be the signal that the packet is valid or not i.e. NF_ACCEPT or
NF_DROP

6.2.2 Destination of Output Data

The destination of the output data is the variable verdict which collects all the responses from the
various hook functions and then according to the responses received decides what to do with the
packet

6.2.3 Output Device

As the module mainly deals with the forwarded packets then the output device is the interface
from which the packet is routed out of the router

6.2.4 Output Interpretation

The output basically signifies whether after processing the packet has a valid source address or
not if it is has an invalid source address then the output NF_DROP would be returned which tells
net filter to drop the packet and if it is valid then the value NF_ACCEPT would be returned which
tells net filter to continue further processing of the packet

 44

6.3 System Internal Data Structure Specification

6.3.1 Identification of Data Structures

There would be three data structures namely

• A link list structure that would store the valid and invalid source addresses along with
some mechanism to identify them and also devices from which they were already seen. It
would also include a variable that would identify that the source address is still under
probation whether it is valid or invalid

• A link list structure that would store the interface and the IP address associated with that
interface

• The third structure would be inherited and would be required in the declaration and
registration of the hooks in the net filter architecture

6.3.2 Modules Accessing Structures

The modules and how they would access the structures are given below

Init_module

• This would use the inherited structure and update it with the values required to register
the hooks and also register them in the netfiler architecture

cleanup_module

• This would also use the inherited structure to un register the hooks from the netfilter
architecture

Prev_Addr_Spoof

• It would use the link list with valid and invalid source addresses to identify whether the
incoming packet has a valid source IP address or not

• It would also create and update the same link list as and when it sees unknown or new
source IP addresses

• It would also use the link list with the interface and their IP addresses to send out
ICMP_ECHOREQUEST packets

get_local_add

• This would use the local link list with the local IP addresses to see if the incoming packets
destination address already exists if not then it would update the list with the incoming
packets destination address and interface

 45

icmp_check

• This would use the list with the valid and invalid source addresses and check whether the
incoming packets source address is validated if invalid then it would update the source
list and make the invalid address valid

6.3.3 Logical Structure of Data

The list with valid and invalid IP addresses would have a structure like this

struct ip_known // A structure because we want to make a link list
{

 struct net_device *ip_in_dev;

//This would store the device on which the packet has come in.This is useful in checking
//whether the ICMP_ECHOREQUEST packet we sent out has come back from the correct device
//or not

 u32 ip_store;

//This variable would store the actual IP address of the packet

 int valid;

//This variable marks whether the source address is valid or not

 int no_pack;

//This is the temporary marking variable while we wait for the ICMP_ECHOREPLY //packet

 struct ip_known *next;

//This is the variable which would point to the next variable in the singly link list

};

 46

The list with the interface and their IP addresses would look like the structure given below

struct interf_add
{

 struct net_device *interface_dev;

//The interface address which is stored as we need to compare that with the incoming packets
//interface in order to select the proper source address for the outgoing packet

 u32 interf_ip;

// The IP address of the interface this is stored in order to give the proper IP address to the packet

 struct interf_add *next;

//This is the variable which would point to the next variable in the singly link list

};

The structure which would be used to register the hook function is given below

struct nf_hook_ops
{

struct list_head list;

// Points to the head of the list

nf_hookfn *hook;

//This pointer is used to point at the function that is to be called whenever a packet hits this hook

int pf;

//This variable would be used to fill in the protocol family for which the packets have to be caught

int hooknum;

//This variable would be used to store in which hook type this hook is registered

int priority;

//This variable gives the priority of the hook as the hooks are ordered in ascending priority in the
//link list
};

 47

7 Module Design specifications

7.1 Module Functional specification

7.1.1 Functions Performed

The functions performed by the various modules are

Init_module

• This would use the inherited structure and update it with the values required to register
the hooks and also register them in the netfiler architecture

cleanup_module

• This would also use the inherited structure to un register the hooks from the netfilter
architecture

Prev_Addr_Spoof

• It would check whether the incoming packet is of a new connection or from an already
established connection.

• If the packet is from a new connection then the following steps given below are followed
• It would use the link list with valid and invalid source addresses to identify whether the

incoming packet has a valid source IP address or not
• It would also create and update the same link list as and when it sees unknown or new

source IP addresses
• It would also use the link list with the interface and their IP addresses to send out

ICMP_ECHOREQUEST packets for the new or unknown source IP addresses
• If the packet is from an already established connection then It would use the link list with

valid and invalid source addresses to identify whether the incoming packet has a valid
source IP address or not

get_local_add

• This would use the local link list with the local IP addresses to see if the incoming packets
destination address already exists if not then it would update the list with the incoming
packets destination address and interface

icmp_check

 48

• This would use the list with the valid and invalid source addresses and check whether the
incoming packets source address is validated if invalid then it would update the source
list and make the invalid address valid

7.1.2 Module Interface Specifications

The module interfaces to be built for the various modules are

Init_module

• Uses three global variables namely of the type static and of the structure nf_hook_ops
• Returns output to the calling command when the module has been first loaded

cleanup_module

• Uses three global variables namely of the type static and of the structure nf_hook_ops

Prev_Addr_Spoof

• The module takes in as argument the hooknum which contains from which hook type this
buffer is coming from

• It also takes in a pointer to the structure sk_buff which in turns point to the actual packet
data itself

• In addition to that a pointer to the incoming and outgoing device is also passed
• The module also needs global variables pointing to the head of both the link lists for

access to the link lists

get_local_add

• The module takes in as argument the hooknum which contains from which hook type this
buffer is coming from

• It also takes in a pointer to the structure sk_buff which in turns point to the actual packet
data itself

• In addition to that a pointer to the incoming and outgoing device is also passed
• The module also needs global variables pointing to the head of the link list containing

local IP addresses for access to the link list
icmp_check

 49

• The module takes in as argument the hooknum which contains from which hook type this
buffer is coming from

• It also takes in a pointer to the structure sk_buff which in turns point to the actual packet
data itself

• In addition to that a pointer to the incoming and outgoing device is also passed
• The module also needs global variables pointing to the head of the link list containing

valid and invalid source IP addresses for access to the link list

7.2 Module operational Specification

7.2.1 Locally Declared Data Specifications

Module Prev_Addr_Spoof

struct sk_buff *sb = *skb

This is used mainly to make one pointer less when accessing the skbuffer

struct neighbour *neigh

This is used to declare a pointer of the neighbor type which would be used to access the neighbor
table structure

struct net_device *indev = sb->dev

This refers to the incoming interface of the packet which is to be used in comparisons

struct net_device *outdev = sb->dst->dev

This refers to the outgoing interface of the packet which is to be used in comparisons

int pingsend

This is a flag used to identify whether a ping should be sent or not

u32 ip_source = sb->nh.iph->saddr

This stores the incoming packets source address

u32 ip_destination = sb->nh.iph->daddr

 50

This stores the outgoing packets destination address

struct ip_conntrack *connect

This declares a pointer of the type ip_conntrack which is useful to get the type of the connection

enum ip_conntrack_info connect_info

This tells which type of connection the incoming packet belongs to.

struct sk_buff *nskb = skb_copy(sb, GFP_ATOMIC)

This variable of the type sk_buff which would hold the copy of the new sk_buff with pointer to a
new packet

Module get_local_add

int flag

This is a flag variable which would signify whether the local address already exists in the list or
not

struct sk_buff *sb = *skb

This is used mainly to make one pointer less when accessing the skbuffer

Module icmp_check

struct sk_buff *sb = *skb

This is used mainly to make one pointer less when accessing the skbuffer

struct icmphdr *icmp

This is used to store the ICMP header of the packet after we extract it from the data portion of the
IP packet

 51

7.2.2 Algorithm Specification

Flow Chart for The Prevention of Address Spoofing Function

Packet is declared
valid If Packet is

from a
neighbor

Idle waiting
for a packet

 Packet Arrives Hook Function
prev_address_spoof

New
Connection

Packet is not
from a
neighbor

Address not
known

Packet cloned

Already
established
connection and
original direction

Address Known

Return
NF_ACCEPT
to hook

Send
ICMP_ECHO
REQUEST
packet

Packet with invalid
source address

Return NF_DROP to
hook

Original packet

Cloned packet

Start

Check packet
if from a new
connection or
from an old
connection

Check
neighbor table
if the packet
is from a
neighbor or
not

Check
address
known or not

Check Packet if
from an already
known and valid
source address

Stop

 52

Algorithm Description

1. function init_module()
2. start
3.
4. prevspoof.hook = prev_addr_spoof;
5. prevspoof.hooknum = NF_IP_FORWARD;
6. prevspoof.pf = PF_INET;
7. prevspoof.priority = NF_IP_PRI_FIRST;
8. nf_register_hook(&prevspoof);
9. checkic.hook=icmp_check;
10. checkic.hooknum = NF_IP_LOCAL_IN;
11. checkic.pf = PF_INET;
12. checkic.priority = NF_IP_PRI_FIRST;
13. nf_register_hook(&checkic);
14. ipadd.hook = get_local_add;
15. ipadd.hooknum = NF_IP_LOCAL_IN;
16. ipadd.pf = PF_INET;
17. ipadd.priority = NF_IP_PRI_FIRST;
18. nf_register_hook(&ipadd);
19. return 0;
20.
21. end function
22.
23.
24. function cleanup_module()
25. start
26.
27. nf_unregister_hook(&prevspoof);
28. nf_unregister_hook(&ipadd);
29. nf_unregister_hook(&checkic);
30.
31. end function
32.
33. static struct nf_hook_ops prevspoof;
34. static struct nf_hook_ops ipadd;
35. static struct nf_hook_ops checkic;
36.
37.
38. struct interf_add
39. start
40.
41. struct net_device *interface_dev;
42. u32 interf_ip;
43. struct interf_add *next;
44.
45. end structure
46.
47. struct interf_add *curr_interf_add=NULL,*foll_interf_add=NULL;
48. static struct interf_add *head_local=NULL;
49.
50. struct ip_known
51. start
52.
53. struct net_device *ip_in_dev;
54. u32 ip_store;

 53

55. int valid;
56. int no_pack;
57. struct ip_known *next;
58.
59. end structure
60.
61. struct ip_known *newip_known=NULL,*ip_knownfoll=NULL;
62. static struct ip_known *ip_head = NULL;
63.
64. static void send_ping(u32 dadd,u32 sadd, struct sk_buff *skb_in)
65. start
66.
67. printk("IN new ICMP send\n\n\n");
68. skb_in->pkt_type=PACKET_HOST;
69. skb_in->nh.iph->saddr=dadd;
70. skb_in->nh.iph->daddr=sadd;
71. icmp_send(skb_in, ICMP_ECHO, 0, 0);
72.
73. end function
74.
75. unsigned int icmp_check(unsigned int hooknum, struct sk_buff **skb,
76. const struct net_device *in,
77. const struct net_device *out,
78. int (*okfn)(struct sk_buff *))
79. start
80.
81. struct sk_buff *sb = *skb;
82. struct icmphdr *icmp;
83.
84. if(sb->nh.iph->protocol != IPPROTO_ICMP)
85. return NF_ACCEPT;
86.
87. icmp = (struct icmphdr *) (sb->data + sb->nh.iph->ihl * 4);
88.
89. if(icmp->type!=ICMP_ECHOREPLY)
90. return NF_ACCEPT;
91.
92. if(ip_head!=NULL)
93. start
94. newip_known=ip_head;
95. while(newip_known!=NULL)
96. start
97.
98. if(newip_known->ip_store==sb->nh.iph->saddr)
99. start
100.
101. if(sb->dev==newip_known->ip_in_dev)
102. start
103.
104. newip_known->valid=1;
105. return NF_ACCEPT;
106.
107. end if
108. end if
109.
110.

 54

111. newip_known=newip_known->next;
112. end while
113.
114. end if
115.
116. return NF_ACCEPT;
117. end if
118.
119.
120. unsigned int get_local_add(unsigned int hooknum, struct sk_buff **skb,
121. const struct net_device *in,
122. const struct net_device *out,
123. int (*okfn)(struct sk_buff *))
124. start
125.
126. int flag=0;
127. struct sk_buff *sb = *skb;
128.
129. if(head_local==NULL)
130. start
131.
132. curr_interf_add=(struct interf_add*)kmalloc(sizeof(struct

interf_add),GFP_KERNEL);
133.
134. if(curr_interf_add==NULL)
135. start
136.
137. return NF_ACCEPT;
138.
139. end if
140.
141. curr_interf_add->interface_dev=sb->dev;
142. curr_interf_add->interf_ip=sb->nh.iph->daddr;
143. curr_interf_add->next=NULL;
144. head_local=curr_interf_add;
145.
146.
147.
148. else
149. start
150. flag=0;
151. curr_interf_add=head_local;
152.
153. while(curr_interf_add!=NULL)
154.
155. start
156.
157. if(curr_interf_add->interface_dev==sb->dev)
158.
159. start
160. flag++;
161.
162. end if
163. foll_interf_add=curr_interf_add;
164. curr_interf_add=curr_interf_add->next;
165.

 55

166. end while
167.
168. if(flag==0)
169. start
170.
171. curr_interf_add=(struct interf_add*)kmalloc(sizeof(struct

interf_add),GFP_KERNEL);
172.
173. if(curr_interf_add==NULL)
174. start
175.
176. return NF_ACCEPT;
177.
178. end if
179. curr_interf_add->interface_dev=sb->dev;
180. curr_interf_add->interf_ip=sb->nh.iph->daddr;
181. curr_interf_add->next=NULL;
182. foll_interf_add->next=curr_interf_add;
183.
184. end if
185.
186. end if
187.
188. curr_interf_add=head_local;
189.
190. while(curr_interf_add!=NULL)
191. start
192.
193. printk("Packet Displayed");
194. printk("device IP Address is %x \n",curr_interf_add->interf_ip);
195. curr_interf_add=curr_interf_add->next;
196.
197. end while
198.
199.
200. return NF_ACCEPT;
201.
202. end function
203.
204. unsigned int prev_addr_spoof(unsigned int hooknum, struct sk_buff

**skb,
205. const struct net_device *in,
206. const struct net_device *out,
207. int (*okfn)(struct sk_buff *))
208.
209. start
210.
211. struct sk_buff *sb = *skb;
212. struct neighbour *neigh;
213. struct net_device *indev = sb->dev;
214. struct net_device *outdev = sb->dst->dev;
215. int pingsend=0;
216.
217.
218. u32 ip_source = sb->nh.iph->saddr;
219. u32 ip_destination = sb->nh.iph->daddr;

 56

220. u32 ip_saddr=0;
221.
222. struct ip_conntrack *connect;
223. enum ip_conntrack_info connect_info;
224.
225. if(ip_source&&ip_destination)
226.
227. start
228.
229. connect = ip_conntrack_get(*skb, &connect_info);
230. if(connect_info==IP_CT_NEW)
231.
232. start
233.
234. neigh = neigh_lookup(&arp_tbl, &ip_source, indev);
235. printk("IN new connecetion");
236.
237. if(neigh!=NULL)
238. start
239.
240. printk("Packet Accepted");
241. printk("Source Address is %x \n", ip_source);
242. printk("Destination Address is %x \n",ip_destination);
243. neigh_release(neigh);
244. return NF_ACCEPT;
245.
246. end if
247.
248. if(head_local!=NULL)
249. start
250.
251. curr_interf_add=head_local;
252.
253. while(curr_interf_add!=NULL)
254. start
255.
256. pingsend=0;
257.
258. if(curr_interf_add->interface_dev==sb->dev)
259. start
260.
261. ip_saddr=curr_interf_add->interf_ip;
262.
263. if(ip_head==NULL)
264. start
265.
266. newip_known=(struct ip_known*)kmalloc(sizeof(struct

ip_known),GFP_KERNEL);
267. newip_known->ip_store=ip_source;
268. newip_known->ip_in_dev=curr_interf_add->interface_dev;
269. newip_known->no_pack=10;
270. newip_known->valid=0;
271. newip_known->next=NULL;
272. ip_head=newip_known;
273. pingsend=1;

 57

274. else
275.
276. newip_known=ip_head;
277.
278. while(newip_known!=NULL)
279. start
280.
281. if((newip_known->ip_store==sb->nh.iph->saddr))
282. start
283.
284. if(newip_known->valid!=0)
285. start
286.
287. printk("Packet Accepted");
288. printk("Source Address is %x \n", ip_source);
289. printk("Destination Address is %x \n",ip_destination);
290. return NF_ACCEPT;
291.
292.
293. end if
294.
295. if(newip_known->no_pack>0)
296. start
297.
298. printk("Packet Accepted");
299. printk("Source Address is %x \n", ip_source);
300. printk("Destination Address is %x \n",ip_destination);
301. newip_known->no_pack=newip_known->no_pack--;
302.
303. return NF_ACCEPT;
304.
305.
306.
307. else
308.
309. printk("IN packet dropper\n");
310. printk("Packet Dropped");
311. printk("Source Address is %x \n",ip_source);
312. printk("Destination Address is %x \n", ip_destination);
313. return NF_DROP;
314.
315. end if
316.
317. end if
318.
319. ip_knownfoll=newip_known;
320.
321.
322. newip_known=newip_known->next;
323. end if
324.
325. newip_known=(struct ip_known*)kmalloc(sizeof(struct

ip_known),GFP_KERNEL);
326. newip_known->ip_store=ip_source;
327. newip_known->ip_in_dev=curr_interf_add->interface_dev;

 58

328. newip_known->no_pack=10;
329. newip_known->valid=0;
330. newip_known->next=NULL;
331. pingsend=1;
332. ip_knownfoll->next=newip_known;
333.
334. end if
335.
336. if(pingsend==1)
337. start
338.
339. struct sk_buff *nskb = skb_copy(sb, GFP_ATOMIC);
340.
341. if (nskb == NULL)
342. start
343. send_ping(ip_source,ip_saddr,sb);
344. printk("Packet Accepted");
345. printk("Source Address is %x \n", ip_source);
346. printk("Destination Address is %x \n",ip_destination);
347. return NF_STOLEN;
348. else
349.
350. send_ping(ip_source,ip_saddr,nskb);
351. printk("Packet Accepted");
352. printk("Source Address is %x \n", ip_source);
353. printk("Destination Address is %x \n",ip_destination);
354. return NF_ACCEPT;
355.
356. end if
357. end if
358.
359. end if
360.
361. curr_interf_add=curr_interf_add->next;
362.
363. end if
364.
365. end while
366.
367. printk("Packet Dropped");
368. printk("Source Address is %x \n",ip_source);
369. printk("Destination Address is %x \n", ip_destination);
370. return NF_DROP;
371. end if
372.
373. if((connect_info==IP_CT_ESTABLISHED)||(connect_info==IP_CT_RELA

TED))
374.
375. start
376.
377. printk("IN old connecetion");
378.
379. if(ip_head!=NULL)
380. start
381.
382. newip_known=ip_head;

 59

383. while(newip_known!=NULL)
384.
385. start
386. if((newip_known->ip_store==sb->nh.iph->saddr)||(newip_known-

>ip_store==sb->nh.iph->daddr))
387.
388. start
389.
390.
391. if(newip_known->valid!=0)
392. start
393.
394. printk("Packet Accepted");
395. printk("Source Address is %x \n", ip_source);
396. printk("Destination Address is %x \n",ip_destination);
397. return NF_ACCEPT;
398.
399.
400. else
401.
402. if(newip_known->no_pack>0)
403. start
404.
405. newip_known->no_pack=newip_known->no_pack--;
406. printk("Packet Accepted");
407. printk("Source Address is %x \n", ip_source);
408. printk("Destination Address is %x \n",ip_destination);
409. return NF_ACCEPT;
410.
411. else
412.
413. printk("IN old packet dropper\n");
414. printk("Packet Dropped");
415. printk("Source Address is %x \n",ip_source);
416. printk("Destination Address is %x \n", ip_destination);
417. return NF_DROP;
418.
419. end if
420.
421. end if
422.
423. end if
424. newip_known=newip_known->next;
425. end while
426. end if
427. printk("Packet Accepted ");
428. printk("Source Address is %x \n", ip_source);
429. printk("Destination Address is %x \n",ip_destination);
430. return NF_ACCEPT;
431. end if
432. end if
433. printk("Packet Accepted due to condition");
434. printk("Source Address is %x \n", sb->nh.iph->saddr);
435. printk("Destination Address is %x \n", sb->nh.iph->daddr);
436. return NF_ACCEPT;
437. end if

 60

7.2.3 Description of Module Operation

Init_module

• This would use the inherited structure and update it with the values required to register
the hooks and also register them in the netfiler architecture

cleanup_module

• This would also use the inherited structure to un register the hooks from the netfilter
architecture

Prev_Addr_Spoof

• It would check whether the incoming packet is of a new connection or from an already
established connection.

• If the packet is from a new connection then the following steps given below are followed
• It would use the link list with valid and invalid source addresses to identify whether the

incoming packet has a valid source IP address or not
• It would also create and update the same link list as and when it sees unknown or new

source IP addresses
• It would also use the link list with the interface and their IP addresses to send out

ICMP_ECHOREQUEST packets for the new or unknown source IP addresses
• If the packet is from an already established connection then It would use the link list with

valid and invalid source addresses to identify whether the incoming packet has a valid
source IP address or not

get_local_add

• This would use the local link list with the local IP addresses to see if the incoming packets
destination address already exists if not then it would update the list with the incoming
packets destination address and interface

icmp_check

• This would use the list with the valid and invalid source addresses and check whether the
incoming packets source address is validated if invalid then it would update the source
list and make the invalid address valid

 61

8 System Verification

8.1 Functions to Be Tested

The functions to be tested are

• init_module
• cleanup_module
• prev_addr_spoof
• get_local_add
• icmp_check
• send_ping

8.2 Description of Test Cases

The first test case would comprise of testing whether the module has been successfully
integrated into the kernel or not and is able to successfully register the hook functions into the
kernel and when unloaded is able to successfully able to un-register the hook functions. This
would be achieved by loading the module and getting output on the standard output that the
module has been successfully loaded and unloading the module and for verification that it was
successfully tested the log files of the kernel i.e. the /var/log/messages was checked.

The second test case would comprise of testing the module to test whether the neighbor can be
verified properly and the packet from the neighbor is allowed to pass through successfully.

Verification of Successful Packet Transmission of Neighbor

Source
(neighbor) Safe Router Destination

 62

The Third test case would comprise of the neighbor using a spoofed address and then verifying
that the packet did not pass through

Verification of Unsuccessful Packet Transmission of Spoofing Neighbor

The fourth test case would comprise of verifying whether a packet coming from across a router is
able to be correctly verified that the source address is genuine and able to pass through the safe
router

Verification of Successful Packet Transmission of Genuine Source

Router Safe Router Destination Source
(genuine)

Spoofing
Source
(neighbor)

Safe Router Destination

 63

The fifth test case would comprise of verifying whether a packet coming from across a router is
able to be correctly verified that the source address is spoofed by a non existent address on the
network and the packet is dropped by the safe router

Verification of Unsuccessful Packet Transmission of Spoofed Source of Non Existent
Address

The sixth test case would comprise of verifying whether a packet coming from across a router is
able to be correctly verified that the source address is spoofed by an already existing address on
the network and the packet is dropped by the safe router

Verification of Unsuccessful Packet Transmission of Spoofed Source of Already Existing

Address

Router Safe Router Destination Source
(spoofed)

Real Source

Router Safe Router Destination Source
(spoofed)

 64

8.3 Test Run Procedures and Results
For the purpose of testing we will use three machines namely

• Erwin (IP address: 10.4.0.1 and 10.6.0.254)
• Chekov (IP address 10.1.0.2 and 10.4.0.2)
• Hubble (IP address 10.1.0.1)

The hierarchy of the machines is given as the network diagram below

In this diagram we use Erwin as the safe router where the module has been loaded. Chekov is
used as a neighbor to test cases 2 and 3 and Hubble would be used as the machine beyond the
router to test cases 4 and 5

We load the module onto Erwin as shown above by the output of test case 1 and log the output to
/var/log/messages file which would be reproduced below and use Ethereal which is a network
analyzer tool used to decode packets that are caught at the interfaces. Ethereal would be used in
Chekov and Hubble

 65

We summarize the test cases with reference to our network as shown below.

Test Case One

The First Test Case verifies that the module has been properly loaded in the router machine
Erwin (10.6.0.253, 10.4.0.1 and 10.10.0.1).

Test Case Two

The Second Test Case verifies whether the neighbor Chekov (10.4.0.1) is able to successfully
communicate with the machine NSKIRK (10.3.0.254) through the router Erwin (10.6.0.253 and
10.4.0.1).

Test Case Three

The Third Test Case verifies that the neighbor Chekov (10.4.0.2) when using a spoofing address
10.13.0.1 is not able to communicate with the machine NSKIRK (10.3.0.254) through the router
Erwin (10.6.0.253 and 10.4.0.1).

Test Case Four

The fourth test case verifies that the machine Hubble (10.1.0.1) is able to communicate with the
machine NSKIRK (10.3.0.254) through router Chekov (10.1.0.2 and 10.4.0.2) and then router
Erwin (10.4.0.1 and 10.6.0.253)

Test Case Five

The fifth test case verifies that the machine Hubble (10.1.0.1) is able to send packets through
router Chekov (10.1.0.2 and 10.4.0.2) using spoofed IP address 11.13.0.1 which is non existent
on the network but the packets were dropped on Erwin (10.4.0.1 and 10.6.0.253) while trying to
communicate with the machine NSKIRK (10.3.0.254)

Test Case Six

The sixth test case verifies that the machine Hubble (10.1.0.1) is able to send packets through
router Chekov (10.1.0.2 and 10.4.0.2) using spoofed IP address 10.13.0.1 which exists on the
network as Franklin but the packets are dropped on Erwin (10.4.0.1 and 10.6.0.253) while trying
to communicate with the machine NSKIRK (10.3.0.254)

 66

Test Case One

The first test run would demonstrate the successful loading of the module and also how to go
about the rest of the test run as the module has to be loaded every time

In this we can see first the loading of the connection tracking modules by using the command sh
load.txt and then running the command make and make install, As is shown in the output the
module is successfully loaded and even removed successfully by using the command make
remove

Test Case Two and Four

We will first show the output of the test cases 2 and 4 These are when the Sources are genuine
and non spoofing and thus we will test that the neighbor sending packets is accepted and able to
send packets and also the machine beyond a unsafe router that is directly connected to the safe
router is able to send and receive packets

We show Erwin’s log file first that is the file /var/log/messages

Dec 6 15:28:56 erwin syslogd 1.4.1: restart.
Dec 6 15:28:56 erwin syslog: syslogd startup succeeded
Dec 6 15:28:56 erwin kernel: klogd 1.4.1, log source = /proc/kmsg started.
Dec 6 15:28:57 erwin syslog: klogd startup succeeded
Dec 6 15:28:56 erwin syslog: syslogd shutdown succeeded

 67

Dec 6 15:29:07 erwin kernel: ip_conntrack version 2.1 (4095 buckets, 32760 max) - 292 bytes
per conntrack
Dec 6 15:29:38 erwin kernel: IN new connecetionPacket AcceptedSource Address is 200040a
Dec 6 15:29:38 erwin kernel: Destination Address is fd00030a
Dec 6 15:29:38 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 15:29:38 erwin kernel: Destination Address is 200040a
Dec 6 15:29:38 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 15:29:38 erwin kernel: Destination Address is fd00030a
Dec 6 15:29:38 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 15:29:38 erwin kernel: Destination Address is fd00030a
Dec 6 15:29:38 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 15:29:38 erwin kernel: Destination Address is fd00030a
Dec 6 15:29:38 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 15:29:38 erwin kernel: Destination Address is fd00030a
Dec 6 15:29:38 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 15:29:38 erwin kernel: Destination Address is 200040a
Dec 6 15:29:38 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 15:29:38 erwin kernel: Destination Address is 200040a
Dec 6 15:29:38 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 15:29:38 erwin kernel: Destination Address is 200040a
Dec 6 15:29:38 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 15:29:38 erwin kernel: Destination Address is fd00030a
Dec 6 15:29:38 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 15:29:38 erwin kernel: Destination Address is 200040a
Dec 6 15:29:38 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 15:29:38 erwin kernel: Destination Address is 200040a
Dec 6 15:29:38 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 15:29:38 erwin kernel: Destination Address is 200040a
Dec 6 15:29:38 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 15:29:38 erwin kernel: Destination Address is 200040a
Dec 6 15:29:38 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 15:29:38 erwin kernel: Destination Address is fd00030a
Dec 6 15:29:38 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 15:29:38 erwin kernel: Destination Address is fd00030a
Dec 6 15:29:38 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 15:29:38 erwin kernel: Destination Address is fd00030a
Dec 6 15:29:38 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 15:29:38 erwin kernel: Destination Address is 200040a
Dec 6 15:29:38 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 15:29:38 erwin kernel: Destination Address is fd00030a
Dec 6 15:29:38 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 15:29:38 erwin kernel: Destination Address is fd00030a
Dec 6 15:29:38 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 15:29:38 erwin kernel: Destination Address is 200040a
Dec 6 15:29:38 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 15:29:38 erwin kernel: Destination Address is fd00030a
Dec 6 15:29:38 erwin kernel: Packet Displayeddevice IP Address is 100040a
Dec 6 15:29:38 erwin kernel: Packet Displayeddevice IP Address is fd00060a
Dec 6 15:29:39 erwin kernel: IN new connecetionIN new ICMP send
Dec 6 15:29:39 erwin kernel:
Dec 6 15:29:39 erwin kernel:
Dec 6 15:29:39 erwin kernel: Packet AcceptedSource Address is fa00030a
Dec 6 15:29:39 erwin kernel: Destination Address is 1000040a
Dec 6 15:29:39 erwin kernel: Packet Displayeddevice IP Address is 100040a
Dec 6 15:29:39 erwin kernel: Packet Displayeddevice IP Address is fd00060a
Dec 6 15:29:39 erwin kernel: Packet Displayeddevice IP Address is 100040a

 68

Dec 6 15:29:39 erwin kernel: Packet Displayeddevice IP Address is fd00060a
Dec 6 15:29:40 erwin kernel: Packet Displayeddevice IP Address is 100040a
Dec 6 15:29:40 erwin kernel: Packet Displayeddevice IP Address is fd00060a
Dec 6 15:30:18 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 15:30:18 erwin kernel: Destination Address is fd00030a
Dec 6 15:30:18 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 15:30:18 erwin kernel: Destination Address is 200040a
Dec 6 15:30:18 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 15:30:18 erwin kernel: Destination Address is fd00030a
Dec 6 15:30:19 erwin kernel: IN new connecetionIN new ICMP send
Dec 6 15:30:19 erwin kernel:
Dec 6 15:30:19 erwin kernel:
Dec 6 15:30:19 erwin kernel: Packet AcceptedSource Address is 100010a
Dec 6 15:30:19 erwin kernel: Destination Address is fe00030a
Dec 6 15:30:19 erwin kernel: Packet Accepted due to conditionSource Address is fe00030a
Dec 6 15:30:19 erwin kernel: Destination Address is 100010a
Dec 6 15:30:19 erwin kernel: Packet Displayeddevice IP Address is 100040a
Dec 6 15:30:19 erwin kernel: Packet Displayeddevice IP Address is fd00060a
Dec 6 15:30:20 erwin kernel: IN new connecetionPacket AcceptedSource Address is 100010a
Dec 6 15:30:20 erwin kernel: Destination Address is fe00030a
Dec 6 15:30:20 erwin kernel: Packet Accepted due to conditionSource Address is fe00030a
Dec 6 15:30:20 erwin kernel: Destination Address is 100010a
Dec 6 15:30:21 erwin kernel: IN new connecetionPacket AcceptedSource Address is 100010a
Dec 6 15:30:21 erwin kernel: Destination Address is fe00030a
Dec 6 15:30:21 erwin kernel: Packet Accepted due to conditionSource Address is fe00030a
Dec 6 15:30:21 erwin kernel: Destination Address is 100010a
Dec 6 15:30:22 erwin kernel: IN new connecetionPacket AcceptedSource Address is 100010a
Dec 6 15:30:22 erwin kernel: Destination Address is fe00030a
Dec 6 15:30:22 erwin kernel: Packet Accepted due to conditionSource Address is fe00030a
Dec 6 15:30:22 erwin kernel: Destination Address is 100010a
Dec 6 15:30:23 erwin kernel: IN new connecetionPacket AcceptedSource Address is 200040a
Dec 6 15:30:23 erwin kernel: Destination Address is fd00030a
Dec 6 15:30:23 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 15:30:23 erwin kernel: Destination Address is 200040a
Dec 6 15:30:23 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 15:30:23 erwin kernel: Destination Address is fd00030a
Dec 6 15:30:23 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 15:30:23 erwin kernel: Destination Address is fd00030a
Dec 6 15:30:23 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 15:30:23 erwin kernel: Destination Address is fd00030a
Dec 6 15:30:23 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 15:30:23 erwin kernel: Destination Address is fd00030a
Dec 6 15:30:23 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 15:30:23 erwin kernel: Destination Address is 200040a
Dec 6 15:30:23 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 15:30:23 erwin kernel: Destination Address is 200040a
Dec 6 15:30:23 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 15:30:23 erwin kernel: Destination Address is 200040a
Dec 6 15:30:23 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 15:30:23 erwin kernel: Destination Address is fd00030a
Dec 6 15:30:23 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 15:30:23 erwin kernel: Destination Address is 200040a
Dec 6 15:30:23 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 15:30:23 erwin kernel: Destination Address is 200040a
Dec 6 15:30:23 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 15:30:43 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a

 69

Dec 6 15:30:43 erwin kernel: Destination Address is fd00030a
Dec 6 15:32:47 erwin ntpd[957]: time reset -0.280159 s
Dec 6 15:32:47 erwin ntpd[957]: kernel time discipline status change 41
Dec 6 15:32:47 erwin ntpd[957]: synchronisation lost
Dec 6 15:39:19 erwin ntpd[957]: kernel time discipline status change 1

In this we can see that the neighbor Chekov i.e. with the address 10.4.0.2 (in hex 200040a) is
able to communicate successfully. This file also shows the fact that when Hubble i.e. With the
address 10.1.0.1 (in hex 100010a) tried to communicate then an ICMP_ECHOREQUEST packet
was sent and when the ICMP_ECHOREPLY was received the flow of ping packets to 10.3.0.254
was able to continue normally

This can also be proved by the ethereal outputs of the two machines which are given below

Ethereal output Chekov

 No. Time Source Destination Protocol Info
 1 0.000000 10.4.0.2 10.3.0.253 TCP 47585 > ipp [SYN]
 2 0.000470 10.3.0.253 10.4.0.2 TCP ipp > 47585 [SYN, ACK]
 3 0.000487 10.4.0.2 10.3.0.253 TCP 47585 > ipp [ACK]
 4 0.000521 10.4.0.2 10.3.0.253 HTTP POST / HTTP/1.1
 5 0.000527 10.4.0.2 10.3.0.253 HTTP Continuation
 6 0.000532 10.4.0.2 10.3.0.253 HTTP Continuation
 7 0.000941 10.3.0.253 10.4.0.2 TCP ipp > 47585 [ACK]
 8 0.000952 10.4.0.2 10.3.0.253 IPP IPP request
 9 0.000996 10.3.0.253 10.4.0.2 TCP ipp > 47585 [ACK]
 10 0.001009 10.3.0.253 10.4.0.2 TCP ipp > 47585 [ACK]
 11 0.002689 10.3.0.253 10.4.0.2 TCP ipp > 47585 [ACK]
 12 0.002938 10.3.0.253 10.4.0.2 HTTP HTTP/1.1 200 OK
 13 0.002946 10.4.0.2 10.3.0.253 TCP 47585 > ipp [ACK]
 14 0.003003 10.3.0.253 10.4.0.2 HTTP Continuation
 15 0.003004 10.3.0.253 10.4.0.2 HTTP Continuation
 16 0.003025 10.4.0.2 10.3.0.253 TCP 47585 > ipp [ACK]
 17 0.003028 10.4.0.2 10.3.0.253 TCP 47585 > ipp [ACK]
 18 0.004790 10.3.0.253 10.4.0.2 IPP IPP response
 19 0.004798 10.4.0.2 10.3.0.253 TCP 47585 > ipp [ACK]
 20 0.004823 10.4.0.2 10.3.0.253 TCP 47585 > ipp [FIN, ACK]
 21 0.005221 10.3.0.253 10.4.0.2 TCP ipp > 47585 [FIN, ACK]
 22 0.005230 10.4.0.2 10.3.0.253 TCP 47585 > ipp [ACK]
 23 5.010014 10.4.0.2 10.3.0.253 TCP 47586 > ipp [SYN]
 24 5.010497 10.3.0.253 10.4.0.2 TCP ipp > 47586 [SYN, ACK]
 25 5.010513 10.4.0.2 10.3.0.253 TCP 47586 > ipp [ACK]
 26 5.010568 10.4.0.2 10.3.0.253 HTTP POST / HTTP/1.1
 27 5.010574 10.4.0.2 10.3.0.253 HTTP Continuation
 28 5.010579 10.4.0.2 10.3.0.253 HTTP Continuation
 29 5.011046 10.3.0.253 10.4.0.2 TCP ipp > 47586 [ACK]
 30 5.011061 10.3.0.253 10.4.0.2 TCP ipp > 47586 [ACK]
 31 5.011062 10.3.0.253 10.4.0.2 TCP ipp > 47586 [ACK]
 32 5.011106 10.4.0.2 10.3.0.253 IPP IPP request
 33 5.012239 10.3.0.253 10.4.0.2 TCP ipp > 47586 [ACK]
 34 5.012550 10.3.0.253 10.4.0.2 HTTP HTTP/1.1 200 OK
 35 5.012564 10.3.0.253 10.4.0.2 HTTP Continuation
 36 5.012582 10.3.0.253 10.4.0.2 HTTP Continuation
 37 5.012622 10.4.0.2 10.3.0.253 TCP 47586 > ipp [ACK]
 38 5.012626 10.4.0.2 10.3.0.253 TCP 47586 > ipp [ACK]

 70

 39 5.012630 10.4.0.2 10.3.0.253 TCP 47586 > ipp [ACK]
 40 5.014513 10.3.0.253 10.4.0.2 IPP IPP response
 41 5.014533 10.4.0.2 10.3.0.253 TCP 47586 > ipp [ACK]
 42 5.014558 10.4.0.2 10.3.0.253 TCP 47586 > ipp [FIN, ACK]
 43 5.014948 10.3.0.253 10.4.0.2 TCP ipp > 47586 [FIN, ACK]
 44 5.014957 10.4.0.2 10.3.0.253 TCP 47586 > ipp [ACK]
 45 10.019997 10.4.0.2 10.3.0.253 TCP 47587 > ipp [SYN]
 46 10.021185 10.3.0.253 10.4.0.2 TCP ipp > 47587 [SYN, ACK]
 47 10.021202 10.4.0.2 10.3.0.253 TCP 47587 > ipp [ACK]
 48 10.021257 10.4.0.2 10.3.0.253 HTTP POST / HTTP/1.1
 49 10.021263 10.4.0.2 10.3.0.253 HTTP Continuation
 50 10.021269 10.4.0.2 10.3.0.253 HTTP Continuation
 51 10.021711 10.3.0.253 10.4.0.2 TCP ipp > 47587 [ACK]
 52 10.021740 10.3.0.253 10.4.0.2 TCP ipp > 47587 [ACK]
 53 10.021749 10.4.0.2 10.3.0.253 IPP IPP request
 54 10.021762 10.3.0.253 10.4.0.2 TCP ipp > 47587 [ACK]
 55 10.023506 10.3.0.253 10.4.0.2 TCP ipp > 47587 [ACK]
 56 10.023779 10.3.0.253 10.4.0.2 HTTP HTTP/1.1 200 OK
 57 10.023800 10.4.0.2 10.3.0.253 TCP 47587 > ipp [ACK]
 58 10.023839 10.3.0.253 10.4.0.2 HTTP Continuation
 59 10.023840 10.3.0.253 10.4.0.2 HTTP Continuation
 60 10.023871 10.4.0.2 10.3.0.253 TCP 47587 > ipp [ACK]
 61 10.023874 10.4.0.2 10.3.0.253 TCP 47587 > ipp [ACK]
 62 10.025654 10.3.0.253 10.4.0.2 IPP IPP response
 63 10.025674 10.4.0.2 10.3.0.253 TCP 47587 > ipp [ACK]
 64 10.025699 10.4.0.2 10.3.0.253 TCP 47587 > ipp [FIN, ACK]
 65 10.026095 10.3.0.253 10.4.0.2 TCP ipp > 47587 [FIN, ACK]
 66 10.026104 10.4.0.2 10.3.0.253 TCP 47587 > ipp [ACK]
 67 15.030087 10.4.0.2 10.3.0.253 TCP 47588 > ipp [SYN]
 68 15.030563 10.3.0.253 10.4.0.2 TCP ipp > 47588 [SYN, ACK]
 69 15.030580 10.4.0.2 10.3.0.253 TCP 47588 > ipp [ACK]
 70 15.030645 10.4.0.2 10.3.0.253 HTTP POST / HTTP/1.1
 71 15.030651 10.4.0.2 10.3.0.253 HTTP Continuation
 72 15.030656 10.4.0.2 10.3.0.253 HTTP Continuation
 73 15.032067 10.3.0.253 10.4.0.2 TCP ipp > 47588 [ACK]
 74 15.032090 10.4.0.2 10.3.0.253 IPP IPP request
 75 15.032117 10.3.0.253 10.4.0.2 TCP ipp > 47588 [ACK]
 76 15.032135 10.3.0.253 10.4.0.2 TCP ipp > 47588 [ACK]
 77 15.033838 10.3.0.253 10.4.0.2 TCP ipp > 47588 [ACK]
 78 15.034090 10.3.0.253 10.4.0.2 HTTP HTTP/1.1 200 OK
 79 15.034112 10.4.0.2 10.3.0.253 TCP 47588 > ipp [ACK]
 80 15.034169 10.3.0.253 10.4.0.2 HTTP Continuation
 81 15.034172 10.3.0.253 10.4.0.2 HTTP Continuation
 82 15.034203 10.4.0.2 10.3.0.253 TCP 47588 > ipp [ACK]
 83 15.034206 10.4.0.2 10.3.0.253 TCP 47588 > ipp [ACK]
 84 15.035971 10.3.0.253 10.4.0.2 IPP IPP response
 85 15.035991 10.4.0.2 10.3.0.253 TCP 47588 > ipp [ACK]
 86 15.036016 10.4.0.2 10.3.0.253 TCP 47588 > ipp [FIN, ACK]
 87 15.036419 10.3.0.253 10.4.0.2 TCP ipp > 47588 [FIN, ACK]
 88 15.036428 10.4.0.2 10.3.0.253 TCP 47588 > ipp [ACK]
 89 20.040002 10.4.0.2 10.3.0.253 TCP 47589 > ipp [SYN]
 90 20.040479 10.3.0.253 10.4.0.2 TCP ipp > 47589 [SYN, ACK]
 91 20.040497 10.4.0.2 10.3.0.253 TCP 47589 > ipp [ACK]
 92 20.040552 10.4.0.2 10.3.0.253 HTTP POST / HTTP/1.1
 93 20.040558 10.4.0.2 10.3.0.253 HTTP Continuation
 94 20.040564 10.4.0.2 10.3.0.253 HTTP Continuation

 71

 95 20.040995 10.3.0.253 10.4.0.2 TCP ipp > 47589 [ACK]
 96 20.041009 10.3.0.253 10.4.0.2 TCP ipp > 47589 [ACK]
 97 20.041023 10.3.0.253 10.4.0.2 TCP ipp > 47589 [ACK]
 98 20.041066 10.4.0.2 10.3.0.253 IPP IPP request
 99 20.042218 10.3.0.253 10.4.0.2 TCP ipp > 47589 [ACK]
 100 20.042584 10.3.0.253 10.4.0.2 HTTP HTTP/1.1 200 OK
 101 20.042606 10.4.0.2 10.3.0.253 TCP 47589 > ipp [ACK]
 102 20.042633 10.3.0.253 10.4.0.2 HTTP Continuation
 103 20.042646 10.3.0.253 10.4.0.2 HTTP Continuation
 104 20.042681 10.4.0.2 10.3.0.253 TCP 47589 > ipp [ACK]
 105 20.042685 10.4.0.2 10.3.0.253 TCP 47589 > ipp [ACK]
 106 20.044478 10.3.0.253 10.4.0.2 IPP IPP response
 107 20.044498 10.4.0.2 10.3.0.253 TCP 47589 > ipp [ACK]
 108 20.044524 10.4.0.2 10.3.0.253 TCP 47589 > ipp [FIN, ACK]
 109 20.044995 10.3.0.253 10.4.0.2 TCP ipp > 47589 [FIN, ACK]
 110 20.045004 10.4.0.2 10.3.0.253 TCP 47589 > ipp [ACK]
 111 21.074693 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 112 21.074895 10.4.0.1 10.1.0.1 ICMP Echo (ping) request
 113 21.075160 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 114 21.075219 10.1.0.1 10.4.0.1 ICMP Echo (ping) reply
 115 22.073566 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 116 22.073978 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 117 23.072452 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 118 23.072871 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 119 24.071344 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 120 24.071758 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 121 25.050005 10.4.0.2 10.3.0.253 TCP 47590 > ipp [SYN]
 122 25.050470 10.3.0.253 10.4.0.2 TCP ipp > 47590 [SYN, ACK]
 123 25.050487 10.4.0.2 10.3.0.253 TCP 47590 > ipp [ACK]
 124 25.050543 10.4.0.2 10.3.0.253 HTTP POST / HTTP/1.1
 125 25.050550 10.4.0.2 10.3.0.253 HTTP Continuation
 126 25.050555 10.4.0.2 10.3.0.253 HTTP Continuation
 127 25.050978 10.3.0.253 10.4.0.2 TCP ipp > 47590 [ACK]
 128 25.050995 10.3.0.253 10.4.0.2 TCP ipp > 47590 [ACK]
 129 25.051024 10.3.0.253 10.4.0.2 TCP ipp > 47590 [ACK]
 130 25.051050 10.4.0.2 10.3.0.253 IPP IPP request
 131 25.052188 10.3.0.253 10.4.0.2 TCP ipp > 47590 [ACK]
 132 25.052439 10.3.0.253 10.4.0.2 HTTP HTTP/1.1 200 OK
 133 25.052460 10.4.0.2 10.3.0.253 TCP 47590 > ipp [ACK]
 134 25.052511 10.3.0.253 10.4.0.2 HTTP Continuation
 135 25.052512 10.3.0.253 10.4.0.2 HTTP Continuation
 136 25.052543 10.4.0.2 10.3.0.253 TCP 47590 > ipp [ACK]
 137 25.052546 10.4.0.2 10.3.0.253 TCP 47590 > ipp [ACK]
 138 25.054316 10.3.0.253 10.4.0.2 IPP IPP response
 139 25.054336 10.4.0.2 10.3.0.253 TCP 47590 > ipp [ACK]
 140 25.054361 10.4.0.2 10.3.0.253 TCP 47590 > ipp [FIN, ACK]
 141 25.054752 10.3.0.253 10.4.0.2 TCP ipp > 47590 [FIN, ACK]
 142 25.054761 10.4.0.2 10.3.0.253 TCP 47590 > ipp [ACK]
 143 25.070224 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 144 25.070585 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 145 26.069792 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 146 26.070202 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 147 27.069677 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 148 27.070099 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 149 28.069571 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 150 28.069991 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply

 72

 151 29.069452 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 152 29.069863 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 153 30.060001 10.4.0.2 10.3.0.253 TCP 47591 > ipp [SYN]
 154 30.060473 10.3.0.253 10.4.0.2 TCP ipp > 47591 [SYN, ACK]
 155 30.060490 10.4.0.2 10.3.0.253 TCP 47591 > ipp [ACK]
 156 30.060558 10.4.0.2 10.3.0.253 HTTP POST / HTTP/1.1
 157 30.060564 10.4.0.2 10.3.0.253 HTTP Continuation
 158 30.060569 10.4.0.2 10.3.0.253 HTTP Continuation
 159 30.060991 10.3.0.253 10.4.0.2 TCP ipp > 47591 [ACK]
 160 30.061004 10.3.0.253 10.4.0.2 TCP ipp > 47591 [ACK]
 161 30.061024 10.3.0.253 10.4.0.2 TCP ipp > 47591 [ACK]
 162 30.061062 10.4.0.2 10.3.0.253 IPP IPP request
 163 30.062197 10.3.0.253 10.4.0.2 TCP ipp > 47591 [ACK]
 164 30.062441 10.3.0.253 10.4.0.2 HTTP HTTP/1.1 200 OK
 165 30.062462 10.4.0.2 10.3.0.253 TCP 47591 > ipp [ACK]
 166 30.062524 10.3.0.253 10.4.0.2 HTTP Continuation
 167 30.062525 10.3.0.253 10.4.0.2 HTTP Continuation
 168 30.062556 10.4.0.2 10.3.0.253 TCP 47591 > ipp [ACK]
 169 30.062559 10.4.0.2 10.3.0.253 TCP 47591 > ipp [ACK]
 170 30.064306 10.3.0.253 10.4.0.2 IPP IPP response
 171 30.064326 10.4.0.2 10.3.0.253 TCP 47591 > ipp [ACK]
 172 30.064363 10.4.0.2 10.3.0.253 TCP 47591 > ipp [FIN, ACK]
 173 30.064759 10.3.0.253 10.4.0.2 TCP ipp > 47591 [FIN, ACK]
 174 30.064768 10.4.0.2 10.3.0.253 TCP 47591 > ipp [ACK]
 175 30.069299 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 176 30.069656 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 177 31.069192 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 178 31.069609 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 179 32.069081 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 180 32.069497 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 181 33.068968 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 182 33.069379 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 183 34.068859 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 184 34.069268 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 185 35.068746 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 186 35.069162 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 187 35.070001 10.4.0.2 10.3.0.253 TCP 47592 > ipp [SYN]
 188 35.070430 10.3.0.253 10.4.0.2 TCP ipp > 47592 [SYN, ACK]
 189 35.070445 10.4.0.2 10.3.0.253 TCP 47592 > ipp [ACK]
 190 35.070499 10.4.0.2 10.3.0.253 HTTP POST / HTTP/1.1
 191 35.070505 10.4.0.2 10.3.0.253 HTTP Continuation
 192 35.070510 10.4.0.2 10.3.0.253 HTTP Continuation
 193 35.070937 10.3.0.253 10.4.0.2 TCP ipp > 47592 [ACK]
 194 35.070952 10.3.0.253 10.4.0.2 TCP ipp > 47592 [ACK]
 195 35.070975 10.3.0.253 10.4.0.2 TCP ipp > 47592 [ACK]
 196 35.071010 10.4.0.2 10.3.0.253 IPP IPP request
 197 35.072142 10.3.0.253 10.4.0.2 TCP ipp > 47592 [ACK]
 198 35.072391 10.3.0.253 10.4.0.2 HTTP HTTP/1.1 200 OK
 199 35.072413 10.4.0.2 10.3.0.253 TCP 47592 > ipp [ACK]
 200 35.072468 10.3.0.253 10.4.0.2 HTTP Continuation
 201 35.072469 10.3.0.253 10.4.0.2 HTTP Continuation
 202 35.072512 10.4.0.2 10.3.0.253 TCP 47592 > ipp [ACK]
 203 35.072516 10.4.0.2 10.3.0.253 TCP 47592 > ipp [ACK]
 204 35.074264 10.3.0.253 10.4.0.2 IPP IPP response
 205 35.074284 10.4.0.2 10.3.0.253 TCP 47592 > ipp [ACK]
 206 35.074309 10.4.0.2 10.3.0.253 TCP 47592 > ipp [FIN, ACK]

 73

 207 35.074700 10.3.0.253 10.4.0.2 TCP ipp > 47592 [FIN, ACK]
 208 35.074709 10.4.0.2 10.3.0.253 TCP 47592 > ipp [ACK]
 209 36.068636 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 210 36.069048 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 211 37.068540 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 212 37.068951 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 213 38.068413 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 214 38.068830 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 215 40.080080 10.4.0.2 10.3.0.253 TCP 47593 > ipp [SYN]
 216 40.080555 10.3.0.253 10.4.0.2 TCP ipp > 47593 [SYN, ACK]
 217 40.080578 10.4.0.2 10.3.0.253 TCP 47593 > ipp [ACK]
 218 40.080896 10.4.0.2 10.3.0.253 HTTP POST / HTTP/1.1
 219 40.080903 10.4.0.2 10.3.0.253 HTTP Continuation
 220 40.080909 10.4.0.2 10.3.0.253 HTTP Continuation
 221 40.082318 10.3.0.253 10.4.0.2 TCP ipp > 47593 [ACK]
 222 40.082351 10.3.0.253 10.4.0.2 TCP ipp > 47593 [ACK]
 223 40.082373 10.3.0.253 10.4.0.2 TCP ipp > 47593 [ACK]
 224 40.082397 10.4.0.2 10.3.0.253 IPP IPP request
 225 40.083535 10.3.0.253 10.4.0.2 TCP ipp > 47593 [ACK]
 226 40.084777 10.3.0.253 10.4.0.2 HTTP HTTP/1.1 200 OK
 227 40.084798 10.4.0.2 10.3.0.253 TCP 47593 > ipp [ACK]
 228 40.084830 10.3.0.253 10.4.0.2 HTTP Continuation
 229 40.084832 10.3.0.253 10.4.0.2 HTTP Continuation
 230 40.084877 10.4.0.2 10.3.0.253 TCP 47593 > ipp [ACK]
 231 40.084880 10.4.0.2 10.3.0.253 TCP 47593 > ipp [ACK]
 232 40.086637 10.3.0.253 10.4.0.2 IPP IPP response
 233 40.086657 10.4.0.2 10.3.0.253 TCP 47593 > ipp [ACK]
 234 40.086684 10.4.0.2 10.3.0.253 TCP 47593 > ipp [FIN, ACK]
 235 40.087065 10.3.0.253 10.4.0.2 TCP ipp > 47593 [FIN, ACK]
 236 40.087075 10.4.0.2 10.3.0.253 TCP 47593 > ipp [ACK]
 237 41.063901 Intel_d3:cb:73 Intel_d3:d2:a0 ARP Who has 10.4.0.2? Tell
 238 41.063916 Intel_d3:d2:a0 Intel_d3:cb:73 ARP 10.4.0.2 is at 00:02:b3
 239 44.231539 Intel_d3:cb:73 Broadcast ARP Who has 10.4.0.16? Tel
 240 45.090003 10.4.0.2 10.3.0.253 TCP 47594 > ipp [SYN]
 241 45.090443 10.3.0.253 10.4.0.2 TCP ipp > 47594 [SYN, ACK]
 242 45.090460 10.4.0.2 10.3.0.253 TCP 47594 > ipp [ACK]
 243 45.090516 10.4.0.2 10.3.0.253 HTTP POST / HTTP/1.1
 244 45.090523 10.4.0.2 10.3.0.253 HTTP Continuation
 245 45.090528 10.4.0.2 10.3.0.253 HTTP Continuation
 246 45.090941 10.3.0.253 10.4.0.2 TCP ipp > 47594 [ACK]
 247 45.090963 10.4.0.2 10.3.0.253 IPP IPP request
 248 45.091001 10.3.0.253 10.4.0.2 TCP ipp > 47594 [ACK]
 249 45.091015 10.3.0.253 10.4.0.2 TCP ipp > 47594 [ACK]
 250 45.092704 10.3.0.253 10.4.0.2 TCP ipp > 47594 [ACK]
 251 45.093947 10.3.0.253 10.4.0.2 HTTP HTTP/1.1 200 OK
 252 45.093969 10.4.0.2 10.3.0.253 TCP 47594 > ipp [ACK]
 253 45.094015 10.3.0.253 10.4.0.2 HTTP Continuation
 254 45.094016 10.3.0.253 10.4.0.2 HTTP Continuation
 255 45.094047 10.4.0.2 10.3.0.253 TCP 47594 > ipp [ACK]
 256 45.094051 10.4.0.2 10.3.0.253 TCP 47594 > ipp [ACK]
 257 45.095812 10.3.0.253 10.4.0.2 IPP IPP response
 258 45.095832 10.4.0.2 10.3.0.253 TCP 47594 > ipp [ACK]
 259 45.095857 10.4.0.2 10.3.0.253 TCP 47594 > ipp [FIN, ACK]
 260 45.096255 10.3.0.253 10.4.0.2 TCP ipp > 47594 [FIN, ACK]
 261 45.096265 10.4.0.2 10.3.0.253 TCP 47594 > ipp [ACK]

 74

 262 45.223422 Intel_d3:cb:73 Broadcast ARP Who has 10.4.0.16? Tell
10.4.0.1
 263 45.741099 Hewlett-_43:2e:a6 CDP/VTP CDP Cisco Discovery Protocol
 264 46.223307 Intel_d3:cb:73 Broadcast ARP Who has 10.4.0.16? Tell
10.4.0.1
 265 50.100004 10.4.0.2 10.3.0.253 TCP 47595 > ipp [SYN]
 266 50.100446 10.3.0.253 10.4.0.2 TCP ipp > 47595 [SYN, ACK]
 267 50.100467 10.4.0.2 10.3.0.253 TCP 47595 > ipp [ACK]
 268 50.100812 10.4.0.2 10.3.0.253 HTTP POST / HTTP/1.1
 269 50.100819 10.4.0.2 10.3.0.253 HTTP Continuation
 270 50.100825 10.4.0.2 10.3.0.253 HTTP Continuation
 271 50.101237 10.3.0.253 10.4.0.2 TCP ipp > 47595 [ACK]
 272 50.101238 10.3.0.253 10.4.0.2 TCP ipp > 47595 [ACK]
 273 50.101252 10.3.0.253 10.4.0.2 TCP ipp > 47595 [ACK]
 274 50.101300 10.4.0.2 10.3.0.253 IPP IPP request
 275 50.102420 10.3.0.253 10.4.0.2 TCP ipp > 47595 [ACK]
 276 50.102672 10.3.0.253 10.4.0.2 HTTP HTTP/1.1 200 OK
 277 50.102695 10.4.0.2 10.3.0.253 TCP 47595 > ipp [ACK]
 278 50.102742 10.3.0.253 10.4.0.2 HTTP Continuation
 279 50.102743 10.3.0.253 10.4.0.2 HTTP Continuation
 280 50.102785 10.4.0.2 10.3.0.253 TCP 47595 > ipp [ACK]
 281 50.102788 10.4.0.2 10.3.0.253 TCP 47595 > ipp [ACK]
 282 50.104526 10.3.0.253 10.4.0.2 IPP IPP response
 283 50.104548 10.4.0.2 10.3.0.253 TCP 47595 > ipp [ACK]
 284 50.104576 10.4.0.2 10.3.0.253 TCP 47595 > ipp [FIN, ACK]
 285 50.104951 10.3.0.253 10.4.0.2 TCP ipp > 47595 [FIN, ACK]
 286 50.104960 10.4.0.2 10.3.0.253 TCP 47595 > ipp [ACK]
 287 55.110001 10.4.0.2 10.3.0.253 TCP 47596 > ipp [SYN]
 288 55.110454 10.3.0.253 10.4.0.2 TCP ipp > 47596 [SYN, ACK]
 289 55.110477 10.4.0.2 10.3.0.253 TCP 47596 > ipp [ACK]
 290 55.110791 10.4.0.2 10.3.0.253 HTTP POST / HTTP/1.1
 291 55.110798 10.4.0.2 10.3.0.253 HTTP Continuation
 292 55.110804 10.4.0.2 10.3.0.253 HTTP Continuation
 293 55.111160 10.3.0.253 10.4.0.2 TCP ipp > 47596 [ACK]
 294 55.111187 10.4.0.2 10.3.0.253 IPP IPP request
 295 55.111221 10.3.0.253 10.4.0.2 TCP ipp > 47596 [ACK]
 296 55.111222 10.3.0.253 10.4.0.2 TCP ipp > 47596 [ACK]
 297 55.112898 10.3.0.253 10.4.0.2 TCP ipp > 47596 [ACK]
 298 55.113168 10.3.0.253 10.4.0.2 HTTP HTTP/1.1 200 OK
 299 55.113189 10.4.0.2 10.3.0.253 TCP 47596 > ipp [ACK]
 300 55.113238 10.3.0.253 10.4.0.2 HTTP Continuation
 301 55.113239 10.3.0.253 10.4.0.2 HTTP Continuation
 302 55.113281 10.4.0.2 10.3.0.253 TCP 47596 > ipp [ACK]
 303 55.113285 10.4.0.2 10.3.0.253 TCP 47596 > ipp [ACK]
 304 55.115022 10.3.0.253 10.4.0.2 IPP IPP response
 305 55.115041 10.4.0.2 10.3.0.253 TCP 47596 > ipp [ACK]
 306 55.115068 10.4.0.2 10.3.0.253 TCP 47596 > ipp [FIN, ACK]
 307 55.115452 10.3.0.253 10.4.0.2 TCP ipp > 47596 [FIN, ACK]
 308 55.115462 10.4.0.2 10.3.0.253 TCP 47596 > ipp [ACK]
 309 60.110005 10.4.0.2 10.3.0.253 TCP 47597 > ipp [SYN]
 310 60.110463 10.3.0.253 10.4.0.2 TCP ipp > 47597 [SYN, ACK]
 311 60.110481 10.4.0.2 10.3.0.253 TCP 47597 > ipp [ACK]
 312 60.110536 10.4.0.2 10.3.0.253 HTTP POST / HTTP/1.1
 313 60.110542 10.4.0.2 10.3.0.253 HTTP Continuation
 314 60.110548 10.4.0.2 10.3.0.253 HTTP Continuation
 315 60.111891 10.3.0.253 10.4.0.2 TCP ipp > 47597 [ACK]

 75

 316 60.111913 10.4.0.2 10.3.0.253 IPP IPP request
 317 60.111951 10.3.0.253 10.4.0.2 TCP ipp > 47597 [ACK]
 318 60.111952 10.3.0.253 10.4.0.2 TCP ipp > 47597 [ACK]
 319 60.113628 10.3.0.253 10.4.0.2 TCP ipp > 47597 [ACK]
 320 60.114889 10.3.0.253 10.4.0.2 HTTP HTTP/1.1 200 OK
 321 60.114910 10.4.0.2 10.3.0.253 TCP 47597 > ipp [ACK]
 322 60.114962 10.3.0.253 10.4.0.2 HTTP Continuation
 323 60.114963 10.3.0.253 10.4.0.2 HTTP Continuation
 324 60.114994 10.4.0.2 10.3.0.253 TCP 47597 > ipp [ACK]
 325 60.114998 10.4.0.2 10.3.0.253 TCP 47597 > ipp [ACK]
 326 60.116737 10.3.0.253 10.4.0.2 IPP IPP response
 327 60.116757 10.4.0.2 10.3.0.253 TCP 47597 > ipp [ACK]
 328 60.116783 10.4.0.2 10.3.0.253 TCP 47597 > ipp [FIN, ACK]
 329 60.117141 10.3.0.253 10.4.0.2 TCP ipp > 47597 [FIN, ACK]
 330 60.117150 10.4.0.2 10.3.0.253 TCP 47597 > ipp [ACK]
 331 65.120086 10.4.0.2 10.3.0.253 TCP 47598 > ipp [SYN]
 332 65.120544 10.3.0.253 10.4.0.2 TCP ipp > 47598 [SYN, ACK]
 333 65.120561 10.4.0.2 10.3.0.253 TCP 47598 > ipp [ACK]
 334 65.120626 10.4.0.2 10.3.0.253 HTTP POST / HTTP/1.1
 335 65.120632 10.4.0.2 10.3.0.253 HTTP Continuation
 336 65.120638 10.4.0.2 10.3.0.253 HTTP Continuation
 337 65.121006 10.3.0.253 10.4.0.2 TCP ipp > 47598 [ACK]
 338 65.121028 10.4.0.2 10.3.0.253 IPP IPP request
 339 65.121053 10.3.0.253 10.4.0.2 TCP ipp > 47598 [ACK]
 340 65.121070 10.3.0.253 10.4.0.2 TCP ipp > 47598 [ACK]
 341 65.122749 10.3.0.253 10.4.0.2 TCP ipp > 47598 [ACK]
 342 65.123986 10.3.0.253 10.4.0.2 HTTP HTTP/1.1 200 OK
 343 65.124007 10.4.0.2 10.3.0.253 TCP 47598 > ipp [ACK]
 344 65.124058 10.3.0.253 10.4.0.2 HTTP Continuation
 345 65.124059 10.3.0.253 10.4.0.2 HTTP Continuation
 346 65.124101 10.4.0.2 10.3.0.253 TCP 47598 > ipp [ACK]
 347 65.124105 10.4.0.2 10.3.0.253 TCP 47598 > ipp [ACK]
 348 65.125829 10.3.0.253 10.4.0.2 IPP IPP response
 349 65.125848 10.4.0.2 10.3.0.253 TCP 47598 > ipp [ACK]
 350 65.125873 10.4.0.2 10.3.0.253 TCP 47598 > ipp [FIN, ACK]
 351 65.126252 10.3.0.253 10.4.0.2 TCP ipp > 47598 [FIN, ACK]
 352 65.126262 10.4.0.2 10.3.0.253 TCP 47598 > ipp [ACK]
 353 70.130002 10.4.0.2 10.3.0.253 TCP 47599 > ipp [SYN]
 354 70.130413 10.3.0.253 10.4.0.2 TCP ipp > 47599 [SYN, ACK]
 355 70.130430 10.4.0.2 10.3.0.253 TCP 47599 > ipp [ACK]
 356 70.130485 10.4.0.2 10.3.0.253 HTTP POST / HTTP/1.1
 357 70.130491 10.4.0.2 10.3.0.253 HTTP Continuation
 358 70.130496 10.4.0.2 10.3.0.253 HTTP Continuation
 359 70.130889 10.3.0.253 10.4.0.2 TCP ipp > 47599 [ACK]
 360 70.130903 10.3.0.253 10.4.0.2 TCP ipp > 47599 [ACK]
 361 70.130927 10.3.0.253 10.4.0.2 TCP ipp > 47599 [ACK]
 362 70.130960 10.4.0.2 10.3.0.253 IPP IPP request
 363 70.132072 10.3.0.253 10.4.0.2 TCP ipp > 47599 [ACK]
 364 70.132325 10.3.0.253 10.4.0.2 HTTP HTTP/1.1 200 OK
 365 70.132346 10.4.0.2 10.3.0.253 TCP 47599 > ipp [ACK]
 366 70.132397 10.3.0.253 10.4.0.2 HTTP Continuation
 367 70.132399 10.3.0.253 10.4.0.2 HTTP Continuation
 368 70.132429 10.4.0.2 10.3.0.253 TCP 47599 > ipp [ACK]
 369 70.132433 10.4.0.2 10.3.0.253 TCP 47599 > ipp [ACK]
 370 70.134178 10.3.0.253 10.4.0.2 IPP IPP response
 371 70.134609 10.4.0.2 10.3.0.253 TCP 47599 > ipp [ACK]

 76

 372 70.134646 10.4.0.2 10.3.0.253 TCP 47599 > ipp [FIN, ACK]
 373 70.135031 10.3.0.253 10.4.0.2 TCP ipp > 47599 [FIN, ACK]
 374 70.135048 10.4.0.2 10.3.0.253 TCP 47599 > ipp [ACK]
 375 75.140005 10.4.0.2 10.3.0.253 TCP 47600 > ipp [SYN]
 376 75.140432 10.3.0.253 10.4.0.2 TCP ipp > 47600 [SYN, ACK]
 377 75.140453 10.4.0.2 10.3.0.253 TCP 47600 > ipp [ACK]
 378 75.146037 10.4.0.2 10.3.0.253 HTTP POST / HTTP/1.1
 379 75.146047 10.4.0.2 10.3.0.253 HTTP Continuation
 380 75.146052 10.4.0.2 10.3.0.253 HTTP Continuation
 381 75.146406 10.3.0.253 10.4.0.2 TCP ipp > 47600 [ACK]
 382 75.146461 10.3.0.253 10.4.0.2 TCP ipp > 47600 [ACK]
 383 75.146475 10.3.0.253 10.4.0.2 TCP ipp > 47600 [ACK]
 384 75.146645 10.4.0.2 10.3.0.253 IPP IPP request
 385 75.147758 10.3.0.253 10.4.0.2 TCP ipp > 47600 [ACK]
 386 75.149000 10.3.0.253 10.4.0.2 HTTP HTTP/1.1 200 OK
 387 75.149022 10.4.0.2 10.3.0.253 TCP 47600 > ipp [ACK]
 388 75.149075 10.3.0.253 10.4.0.2 HTTP Continuation
 389 75.149076 10.3.0.253 10.4.0.2 HTTP Continuation
 390 75.149107 10.4.0.2 10.3.0.253 TCP 47600 > ipp [ACK]
 391 75.149111 10.4.0.2 10.3.0.253 TCP 47600 > ipp [ACK]
 392 75.150842 10.3.0.253 10.4.0.2 IPP IPP response
 393 75.150866 10.4.0.2 10.3.0.253 TCP 47600 > ipp [ACK]
 394 75.150896 10.4.0.2 10.3.0.253 TCP 47600 > ipp [FIN, ACK]
 395 75.151252 10.3.0.253 10.4.0.2 TCP ipp > 47600 [FIN, ACK]
 396 75.151262 10.4.0.2 10.3.0.253 TCP 47600 > ipp [ACK]
 397 80.150010 10.4.0.2 10.3.0.253 TCP 47601 > ipp [SYN]
 398 80.150449 10.3.0.253 10.4.0.2 TCP ipp > 47601 [SYN, ACK]
 399 80.150471 10.4.0.2 10.3.0.253 TCP 47601 > ipp [ACK]
 400 80.150631 10.4.0.2 10.3.0.253 HTTP POST / HTTP/1.1
 401 80.150637 10.4.0.2 10.3.0.253 HTTP Continuation
 402 80.150642 10.4.0.2 10.3.0.253 HTTP Continuation
 403 80.151037 10.3.0.253 10.4.0.2 TCP ipp > 47601 [ACK]
 404 80.151051 10.3.0.253 10.4.0.2 TCP ipp > 47601 [ACK]
 405 80.151076 10.3.0.253 10.4.0.2 TCP ipp > 47601 [ACK]
 406 80.151127 10.4.0.2 10.3.0.253 IPP IPP request
 407 80.152245 10.3.0.253 10.4.0.2 TCP ipp > 47601 [ACK]
 408 80.153482 10.3.0.253 10.4.0.2 HTTP HTTP/1.1 200 OK
 409 80.153549 10.3.0.253 10.4.0.2 HTTP Continuation
 410 80.153550 10.3.0.253 10.4.0.2 HTTP Continuation
 411 80.154770 10.4.0.2 10.3.0.253 TCP 47601 > ipp [ACK]
 412 80.154775 10.4.0.2 10.3.0.253 TCP 47601 > ipp [ACK]
 413 80.154779 10.4.0.2 10.3.0.253 TCP 47601 > ipp [ACK]
 414 80.156605 10.3.0.253 10.4.0.2 IPP IPP response
 415 80.159686 10.4.0.2 10.3.0.253 TCP 47601 > ipp [ACK]
 416 80.159722 10.4.0.2 10.3.0.253 TCP 47601 > ipp [FIN, ACK]
 417 80.160111 10.3.0.253 10.4.0.2 TCP ipp > 47601 [FIN, ACK]
 418 80.160131 10.4.0.2 10.3.0.253 TCP 47601 > ipp [ACK]

 77

Ethereal Output Hubble

No. Time Source Destination Protocol Info
 1 0.000000 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 2 0.000352 Intel_d3:d2:9f Broadcast ARP Who has 10.1.0.1? Tell 10.1.0.2
 3 0.000369 Intel_d3:d2:79 Intel_d3:d2:9f ARP 10.1.0.1 is at 00:02:b3:d3:d2:79
 4 0.000488 10.4.0.1 10.1.0.1 ICMP Echo (ping) request
 5 0.000546 10.1.0.1 10.4.0.1 ICMP Echo (ping) reply
 6 0.000615 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 7 0.998998 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 8 0.999547 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 9 1.997999 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 10 1.998552 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 11 2.996999 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 12 2.997550 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 13 3.996001 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 14 3.996490 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 15 4.995672 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 16 4.996219 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 17 5.995671 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 18 5.996233 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 19 6.995676 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 20 6.996232 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 21 7.995671 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 22 7.996218 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 23 8.995636 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 24 8.996121 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 25 9.995635 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 26 9.996189 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 27 10.995635 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 28 10.996188 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 29 11.995635 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 30 11.996183 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 31 12.995637 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 32 12.996184 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 33 13.995637 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 34 13.996191 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 35 14.995638 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 36 14.996189 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 37 15.995655 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 38 15.996206 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 39 16.995642 10.1.0.1 10.3.0.254 ICMP Echo (ping) request
 40 16.996196 10.3.0.254 10.1.0.1 ICMP Echo (ping) reply
 41 24.667435 Hewlett-_43:2e:a2 CDP/VTP CDP Cisco Discovery Protocol
 42 84.670086 Hewlett-_43:2e:a2 CDP/VTP CDP Cisco Discovery Protocol

Thus as seen above from the ethereal outputs Chekov was able to transmit successfully and
Hubble when it first transmitted received an ICMP_ECHOREQUEST packet from Erwin 10.4.0.1
and after replying to that packet was able to transmit further packets successfully Thus test cases
2 and 4 were successfully tested

 78

Test Case Three

We will now verify test case three by showing that a spoofing neighbors packets are dropped

We will first see Erwin’s Kernel messages log file

/var/log/messages

Dec 6 17:40:31 erwin syslogd 1.4.1: restart.
Dec 6 17:40:31 erwin syslog: syslogd startup succeeded
Dec 6 17:40:31 erwin kernel: klogd 1.4.1, log source = /proc/kmsg started.
Dec 6 17:40:31 erwin syslog: klogd startup succeeded
Dec 6 17:41:41 erwin kernel: IN new connecetionPacket DroppedSource Address is 1000d0a
Dec 6 17:41:41 erwin kernel: Destination Address is fd00030a
Dec 6 17:41:53 erwin kernel: IN new connecetionPacket DroppedSource Address is 1000d0a
Dec 6 17:41:53 erwin kernel: Destination Address is fd00030a
Dec 6 17:42:26 erwin kernel: IN new connecetionPacket DroppedSource Address is 1000d0a
Dec 6 17:42:26 erwin kernel: Destination Address is fe00030a
Dec 6 17:42:27 erwin kernel: IN new connecetionPacket DroppedSource Address is 1000d0a
Dec 6 17:42:27 erwin kernel: Destination Address is fe00030a
Dec 6 17:42:28 erwin kernel: IN new connecetionPacket DroppedSource Address is 1000d0a
Dec 6 17:42:28 erwin kernel: Destination Address is fe00030a
Dec 6 17:42:29 erwin kernel: IN new connecetionPacket DroppedSource Address is 1000d0a
Dec 6 17:42:29 erwin kernel: Destination Address is fe00030a

This shows that in case the neighbor is spoofing the packets are successfully dropped by the
module

This is further proved by the ethereal file of Chekov

Ethereal Output Chekov

No. Time Source Destination Protocol Info
 1 0.000000 10.13.0.1 10.3.0.253 TCP 47927 > ipp [SYN]
 2 5.999948 10.13.0.1 10.3.0.253 TCP 47927 > ipp [SYN]
 3 17.999999 10.13.0.1 10.3.0.253 TCP 47927 > ipp [SYN]
 4 41.999950 10.13.0.1 10.3.0.253 TCP 47927 > ipp [SYN]
 5 46.999947 Intel_d3:d2:a0 ARP Who has 10.4.0.1? Tell 10.4.0.2
 6 47.000092 Intel_d3:cb:73 ARP 10.4.0.1 is at 00:02:b3:d3:cb:73

Test Case Five

The Test case would verify that a non existent address on the network is not able to pass through
the safe router

 79

We will first see Erwin’s Kernel messages log file

/var/log/messages

Dec 6 18:18:36 erwin syslogd 1.4.1: restart.
Dec 6 18:18:36 erwin syslog: syslogd startup succeeded
Dec 6 18:18:36 erwin kernel: klogd 1.4.1, log source = /proc/kmsg started.
Dec 6 18:18:36 erwin syslog: klogd startup succeeded
Dec 6 18:18:36 erwin syslog: syslogd shutdown succeeded
Dec 6 18:19:31 erwin kernel: IN new connecetionPacket AcceptedSource Address is 200040a
Dec 6 18:19:31 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:31 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:31 erwin kernel: Destination Address is 200040a
Dec 6 18:19:31 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:31 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:31 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:31 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:31 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:31 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:31 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:31 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:31 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:31 erwin kernel: Destination Address is 200040a
Dec 6 18:19:31 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:31 erwin kernel: Destination Address is 200040a
Dec 6 18:19:31 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:31 erwin kernel: Destination Address is 200040a
Dec 6 18:19:31 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:31 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:31 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:31 erwin kernel: Destination Address is 200040a
Dec 6 18:19:31 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:31 erwin kernel: Destination Address is 200040a
Dec 6 18:19:31 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:31 erwin kernel: Destination Address is 200040a
Dec 6 18:19:31 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:31 erwin kernel: Destination Address is 200040a
Dec 6 18:19:31 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:31 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:31 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:31 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:31 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:31 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:31 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:31 erwin kernel: Destination Address is 200040a
Dec 6 18:19:31 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:31 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:31 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:31 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:31 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:31 erwin kernel: Destination Address is 200040a
Dec 6 18:19:31 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:31 erwin kernel: Destination Address is fd00030a

 80

Dec 6 18:19:31 erwin kernel: IN new connecetionIN new ICMP send
Dec 6 18:19:31 erwin kernel:
Dec 6 18:19:31 erwin kernel:
Dec 6 18:19:31 erwin kernel: Packet AcceptedSource Address is fa00030a
Dec 6 18:19:31 erwin kernel: Destination Address is 1000040a
Dec 6 18:19:31 erwin kernel: Packet Displayeddevice IP Address is fd00060a
Dec 6 18:19:31 erwin kernel: Packet Displayeddevice IP Address is 100040a
Dec 6 18:19:34 erwin kernel: IN new connecetionIN new ICMP send
Dec 6 18:19:34 erwin kernel:
Dec 6 18:19:34 erwin kernel:
Dec 6 18:19:34 erwin kernel: Packet AcceptedSource Address is 1000d0b
Dec 6 18:19:34 erwin kernel: Destination Address is fe00030a
Dec 6 18:19:35 erwin kernel: IN new connecetionPacket AcceptedSource Address is 1000d0b
Dec 6 18:19:35 erwin kernel: Destination Address is fe00030a
Dec 6 18:19:36 erwin kernel: IN new connecetionPacket AcceptedSource Address is 200040a
Dec 6 18:19:36 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:36 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:36 erwin kernel: Destination Address is 200040a
Dec 6 18:19:36 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:36 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:36 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:36 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:36 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:36 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:36 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:36 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:36 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:36 erwin kernel: Destination Address is 200040a
Dec 6 18:19:36 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:36 erwin kernel: Destination Address is 200040a
Dec 6 18:19:36 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:36 erwin kernel: Destination Address is 200040a
Dec 6 18:19:36 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:36 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:36 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:36 erwin kernel: Destination Address is 200040a
Dec 6 18:19:36 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:36 erwin kernel: Destination Address is 200040a
Dec 6 18:19:36 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:36 erwin kernel: Destination Address is 200040a
Dec 6 18:19:36 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:36 erwin kernel: Destination Address is 200040a
Dec 6 18:19:36 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:36 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:36 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:36 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:36 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:36 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:36 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:36 erwin kernel: Destination Address is 200040a
Dec 6 18:19:36 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:36 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:36 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:36 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:36 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:36 erwin kernel: Destination Address is 200040a

 81

Dec 6 18:19:36 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:36 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:36 erwin kernel: IN new connecetionPacket AcceptedSource Address is 1000d0b
Dec 6 18:19:36 erwin kernel: Destination Address is fe00030a
Dec 6 18:19:37 erwin kernel: IN new connecetionPacket AcceptedSource Address is 1000d0b
Dec 6 18:19:37 erwin kernel: Destination Address is fe00030a
Dec 6 18:19:38 erwin kernel: IN new connecetionPacket AcceptedSource Address is 1000d0b
Dec 6 18:19:38 erwin kernel: Destination Address is fe00030a
Dec 6 18:19:39 erwin kernel: IN new connecetionPacket AcceptedSource Address is 1000d0b
Dec 6 18:19:39 erwin kernel: Destination Address is fe00030a
Dec 6 18:19:40 erwin kernel: IN new connecetionPacket AcceptedSource Address is 1000d0b
Dec 6 18:19:40 erwin kernel: Destination Address is fe00030a
Dec 6 18:19:41 erwin kernel: IN new connecetionPacket AcceptedSource Address is 200040a
Dec 6 18:19:41 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:41 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:41 erwin kernel: Destination Address is 200040a
Dec 6 18:19:41 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:41 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:41 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:41 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:41 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:41 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:41 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:41 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:41 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:41 erwin kernel: Destination Address is 200040a
Dec 6 18:19:41 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:41 erwin kernel: Destination Address is 200040a
Dec 6 18:19:41 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:41 erwin kernel: Destination Address is 200040a
Dec 6 18:19:41 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:41 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:41 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:41 erwin kernel: Destination Address is 200040a
Dec 6 18:19:41 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:41 erwin kernel: Destination Address is 200040a
Dec 6 18:19:41 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:41 erwin kernel: Destination Address is 200040a
Dec 6 18:19:41 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:41 erwin kernel: Destination Address is 200040a
Dec 6 18:19:41 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:41 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:41 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:41 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:41 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:41 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:41 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:41 erwin kernel: Destination Address is 200040a
Dec 6 18:19:41 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:41 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:41 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:41 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:41 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:41 erwin kernel: Destination Address is 200040a
Dec 6 18:19:41 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:41 erwin kernel: Destination Address is fd00030a

 82

Dec 6 18:19:41 erwin kernel: IN new connecetionPacket AcceptedSource Address is 1000d0b
Dec 6 18:19:41 erwin kernel: Destination Address is fe00030a
Dec 6 18:19:42 erwin kernel: IN new connecetionPacket AcceptedSource Address is 1000d0b
Dec 6 18:19:42 erwin kernel: Destination Address is fe00030a
Dec 6 18:19:46 erwin kernel: IN new connecetionPacket AcceptedSource Address is 200040a
Dec 6 18:19:46 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:46 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:46 erwin kernel: Destination Address is 200040a
Dec 6 18:19:46 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:46 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:46 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:46 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:46 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:46 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:46 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:46 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:46 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:46 erwin kernel: Destination Address is 200040a
Dec 6 18:19:46 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:46 erwin kernel: Destination Address is 200040a
Dec 6 18:19:46 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:46 erwin kernel: Destination Address is 200040a
Dec 6 18:19:46 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:46 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:46 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:46 erwin kernel: Destination Address is 200040a
Dec 6 18:19:46 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:46 erwin kernel: Destination Address is 200040a
Dec 6 18:19:46 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:46 erwin kernel: Destination Address is 200040a
Dec 6 18:19:46 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:46 erwin kernel: Destination Address is 200040a
Dec 6 18:19:46 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:46 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:46 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:46 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:46 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:46 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:46 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:46 erwin kernel: Destination Address is 200040a
Dec 6 18:19:46 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:46 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:46 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:46 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:46 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:46 erwin kernel: Destination Address is 200040a
Dec 6 18:19:46 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:46 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:49 erwin kernel: IN new connecetionPacket AcceptedSource Address is 1000d0b
Dec 6 18:19:49 erwin kernel: Destination Address is fe00030a
Dec 6 18:19:50 erwin kernel: IN new connecetionPacket AcceptedSource Address is 1000d0b
Dec 6 18:19:50 erwin kernel: Destination Address is fe00030a
Dec 6 18:19:51 erwin kernel: IN new connecetionPacket AcceptedSource Address is 200040a
Dec 6 18:19:51 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:51 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:51 erwin kernel: Destination Address is 200040a

 83

Dec 6 18:19:51 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:51 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:51 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:51 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:51 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:51 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:51 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:51 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:51 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:51 erwin kernel: Destination Address is 200040a
Dec 6 18:19:51 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:51 erwin kernel: Destination Address is 200040a
Dec 6 18:19:51 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:51 erwin kernel: Destination Address is 200040a
Dec 6 18:19:51 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:51 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:51 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:51 erwin kernel: Destination Address is 200040a
Dec 6 18:19:51 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:51 erwin kernel: Destination Address is 200040a
Dec 6 18:19:51 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:51 erwin kernel: Destination Address is 200040a
Dec 6 18:19:51 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:51 erwin kernel: Destination Address is 200040a
Dec 6 18:19:51 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:51 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:51 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:51 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:51 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:51 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:51 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:51 erwin kernel: Destination Address is 200040a
Dec 6 18:19:51 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:51 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:51 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:51 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:51 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 18:19:51 erwin kernel: Destination Address is 200040a
Dec 6 18:19:51 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 18:19:51 erwin kernel: Destination Address is fd00030a
Dec 6 18:19:51 erwin kernel: IN new connecetionIN packet dropper
Dec 6 18:19:51 erwin kernel: Packet DroppedSource Address is 1000d0b
Dec 6 18:19:51 erwin kernel: Destination Address is fe00030a
Dec 6 18:19:52 erwin kernel: IN new connecetionIN packet dropper
Dec 6 18:19:52 erwin kernel: Packet DroppedSource Address is 1000d0b
Dec 6 18:19:52 erwin kernel: Destination Address is fe00030a
Dec 6 18:19:53 erwin kernel: IN new connecetionIN packet dropper
Dec 6 18:19:53 erwin kernel: Packet DroppedSource Address is 1000d0b
Dec 6 18:19:53 erwin kernel: Destination Address is fe00030a
Dec 6 18:19:54 erwin kernel: IN new connecetionIN packet dropper
Dec 6 18:19:54 erwin kernel: Packet DroppedSource Address is 1000d0b
Dec 6 18:19:54 erwin kernel: Destination Address is fe00030a
Dec 6 18:19:55 erwin kernel: IN new connecetionIN packet dropper
Dec 6 18:19:55 erwin kernel: Packet DroppedSource Address is 1000d0b
Dec 6 18:19:55 erwin kernel: Destination Address is fe00030a

 84

Thus as can be seen the spoofed address 11.13.0.1 from Hubble gets dropped and is not able to
get through. This can be seen further by the ethereal output of Hubble and Chekov as Chekov
being the unsafe router forwards the spoofed packet to Erwin

Ethereal Output of Chekov

 No. Time Source Destination Protocol Info
 1 0.000000 10.4.0.2 10.3.0.253 TCP 49397 > ipp [SYN]
 2 0.000479 10.3.0.253 10.4.0.2 TCP ipp > 49397 [SYN, ACK]
 3 0.000498 10.4.0.2 10.3.0.253 TCP 49397 > ipp [ACK]
 4 0.000535 10.4.0.2 10.3.0.253 HTTP POST / HTTP/1.1
 5 0.000541 10.4.0.2 10.3.0.253 HTTP Continuation
 6 0.000547 10.4.0.2 10.3.0.253 HTTP Continuation
 7 0.000974 10.3.0.253 10.4.0.2 TCP ipp > 49397 [ACK]
 8 0.000988 10.3.0.253 10.4.0.2 TCP ipp > 49397 [ACK]
 9 0.001000 10.4.0.2 10.3.0.253 IPP IPP request
 10 0.001022 10.3.0.253 10.4.0.2 TCP ipp > 49397 [ACK]
 11 0.002742 10.3.0.253 10.4.0.2 TCP ipp > 49397 [ACK]
 12 0.003026 10.3.0.253 10.4.0.2 HTTP HTTP/1.1 200 OK
 13 0.003035 10.4.0.2 10.3.0.253 TCP 49397 > ipp [ACK]
 14 0.003101 10.3.0.253 10.4.0.2 HTTP Continuation
 15 0.003102 10.3.0.253 10.4.0.2 HTTP Continuation
 16 0.003112 10.4.0.2 10.3.0.253 TCP 49397 > ipp [ACK]
 17 0.003115 10.4.0.2 10.3.0.253 TCP 49397 > ipp [ACK]
 18 0.004892 10.3.0.253 10.4.0.2 IPP IPP response
 19 0.004901 10.4.0.2 10.3.0.253 TCP 49397 > ipp [ACK]
 20 0.004926 10.4.0.2 10.3.0.253 TCP 49397 > ipp [FIN, ACK]
 21 0.005334 10.3.0.253 10.4.0.2 TCP ipp > 49397 [FIN, ACK]
 22 0.005343 10.4.0.2 10.3.0.253 TCP 49397 > ipp [ACK]
 23 5.009997 10.4.0.2 10.3.0.253 TCP 49398 > ipp [SYN]
 24 5.010470 10.3.0.253 10.4.0.2 TCP ipp > 49398 [SYN, ACK]
 25 5.010488 10.4.0.2 10.3.0.253 TCP 49398 > ipp [ACK]
 26 5.010544 10.4.0.2 10.3.0.253 HTTP POST / HTTP/1.1
 27 5.010550 10.4.0.2 10.3.0.253 HTTP Continuation
 28 5.010555 10.4.0.2 10.3.0.253 HTTP Continuation
 29 5.010956 10.3.0.253 10.4.0.2 TCP ipp > 49398 [ACK]
 30 5.010978 10.4.0.2 10.3.0.253 IPP IPP request
 31 5.011017 10.3.0.253 10.4.0.2 TCP ipp > 49398 [ACK]
 32 5.011018 10.3.0.253 10.4.0.2 TCP ipp > 49398 [ACK]
 33 5.012707 10.3.0.253 10.4.0.2 TCP ipp > 49398 [ACK]
 34 5.012952 10.3.0.253 10.4.0.2 HTTP HTTP/1.1 200 OK
 35 5.012973 10.4.0.2 10.3.0.253 TCP 49398 > ipp [ACK]
 36 5.013025 10.3.0.253 10.4.0.2 HTTP Continuation
 37 5.013026 10.3.0.253 10.4.0.2 HTTP Continuation
 38 5.013056 10.4.0.2 10.3.0.253 TCP 49398 > ipp [ACK]
 39 5.013060 10.4.0.2 10.3.0.253 TCP 49398 > ipp [ACK]
 40 5.014818 10.3.0.253 10.4.0.2 IPP IPP response
 41 5.014838 10.4.0.2 10.3.0.253 TCP 49398 > ipp [ACK]
 42 5.014863 10.4.0.2 10.3.0.253 TCP 49398 > ipp [FIN, ACK]
 43 5.015259 10.3.0.253 10.4.0.2 TCP ipp > 49398 [FIN, ACK]
 44 5.015269 10.4.0.2 10.3.0.253 TCP 49398 > ipp [ACK]
 45 10.019998 10.4.0.2 10.3.0.253 TCP 49399 > ipp [SYN]
 46 10.020458 10.3.0.253 10.4.0.2 TCP ipp > 49399 [SYN, ACK]
 47 10.020475 10.4.0.2 10.3.0.253 TCP 49399 > ipp [ACK]
 48 10.020533 10.4.0.2 10.3.0.253 HTTP POST / HTTP/1.1

 85

 49 10.020539 10.4.0.2 10.3.0.253 HTTP Continuation
 50 10.020545 10.4.0.2 10.3.0.253 HTTP Continuation
 51 10.020982 10.3.0.253 10.4.0.2 TCP ipp > 49399 [ACK]
 52 10.020996 10.3.0.253 10.4.0.2 TCP ipp > 49399 [ACK]
 53 10.021013 10.3.0.253 10.4.0.2 TCP ipp > 49399 [ACK]
 54 10.021054 10.4.0.2 10.3.0.253 IPP IPP request
 55 10.022196 10.3.0.253 10.4.0.2 TCP ipp > 49399 [ACK]
 56 10.022451 10.3.0.253 10.4.0.2 HTTP HTTP/1.1 200 OK
 57 10.022472 10.4.0.2 10.3.0.253 TCP 49399 > ipp [ACK]
 58 10.022512 10.3.0.253 10.4.0.2 HTTP Continuation
 59 10.022526 10.3.0.253 10.4.0.2 HTTP Continuation
 60 10.022556 10.4.0.2 10.3.0.253 TCP 49399 > ipp [ACK]
 61 10.022560 10.4.0.2 10.3.0.253 TCP 49399 > ipp [ACK]
 62 10.024316 10.3.0.253 10.4.0.2 IPP IPP response
 63 10.024337 10.4.0.2 10.3.0.253 TCP 49399 > ipp [ACK]
 64 10.024362 10.4.0.2 10.3.0.253 TCP 49399 > ipp [FIN, ACK]
 65 10.024771 10.3.0.253 10.4.0.2 TCP ipp > 49399 [FIN, ACK]
 66 10.024780 10.4.0.2 10.3.0.253 TCP 49399 > ipp [ACK]
 67 11.846409 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 68 12.858153 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 69 13.859534 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 70 14.859479 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 71 15.029998 10.4.0.2 10.3.0.253 TCP 49400 > ipp [SYN]
 72 15.030469 10.3.0.253 10.4.0.2 TCP ipp > 49400 [SYN, ACK]
 73 15.030487 10.4.0.2 10.3.0.253 TCP 49400 > ipp [ACK]
 74 15.030544 10.4.0.2 10.3.0.253 HTTP POST / HTTP/1.1
 75 15.030551 10.4.0.2 10.3.0.253 HTTP Continuation
 76 15.030556 10.4.0.2 10.3.0.253 HTTP Continuation
 77 15.030959 10.3.0.253 10.4.0.2 TCP ipp > 49400 [ACK]
 78 15.030981 10.4.0.2 10.3.0.253 IPP IPP request
 79 15.031029 10.3.0.253 10.4.0.2 TCP ipp > 49400 [ACK]
 80 15.031054 10.3.0.253 10.4.0.2 TCP ipp > 49400 [ACK]
 81 15.032711 10.3.0.253 10.4.0.2 TCP ipp > 49400 [ACK]
 82 15.032956 10.3.0.253 10.4.0.2 HTTP HTTP/1.1 200 OK
 83 15.032977 10.4.0.2 10.3.0.253 TCP 49400 > ipp [ACK]
 84 15.033039 10.3.0.253 10.4.0.2 HTTP Continuation
 85 15.033040 10.3.0.253 10.4.0.2 HTTP Continuation
 86 15.033071 10.4.0.2 10.3.0.253 TCP 49400 > ipp [ACK]
 87 15.033074 10.4.0.2 10.3.0.253 TCP 49400 > ipp [ACK]
 88 15.034829 10.3.0.253 10.4.0.2 IPP IPP response
 89 15.034849 10.4.0.2 10.3.0.253 TCP 49400 > ipp [ACK]
 90 15.034874 10.4.0.2 10.3.0.253 TCP 49400 > ipp [FIN, ACK]
 91 15.035289 10.3.0.253 10.4.0.2 TCP ipp > 49400 [FIN, ACK]
 92 15.035298 10.4.0.2 10.3.0.253 TCP 49400 > ipp [ACK]
 93 15.859397 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 94 16.877672 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 95 17.877642 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 96 18.877453 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 97 19.877350 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 98 20.040050 10.4.0.2 10.3.0.253 TCP 49401 > ipp [SYN]
 99 20.040496 10.3.0.253 10.4.0.2 TCP ipp > 49401 [SYN, ACK]
 100 20.040513 10.4.0.2 10.3.0.253 TCP 49401 > ipp [ACK]
 101 20.040591 10.4.0.2 10.3.0.253 HTTP POST / HTTP/1.1
 102 20.040598 10.4.0.2 10.3.0.253 HTTP Continuation
 103 20.040603 10.4.0.2 10.3.0.253 HTTP Continuation
 104 20.041994 10.3.0.253 10.4.0.2 TCP ipp > 49401 [ACK]

 86

 105 20.042017 10.3.0.253 10.4.0.2 TCP ipp > 49401 [ACK]
 106 20.042043 10.3.0.253 10.4.0.2 TCP ipp > 49401 [ACK]
 107 20.042067 10.4.0.2 10.3.0.253 IPP IPP request
 108 20.043193 10.3.0.253 10.4.0.2 TCP ipp > 49401 [ACK]
 109 20.044432 10.3.0.253 10.4.0.2 HTTP HTTP/1.1 200 OK
 110 20.044453 10.4.0.2 10.3.0.253 TCP 49401 > ipp [ACK]
 111 20.044514 10.3.0.253 10.4.0.2 HTTP Continuation
 112 20.044515 10.3.0.253 10.4.0.2 HTTP Continuation
 113 20.044546 10.4.0.2 10.3.0.253 TCP 49401 > ipp [ACK]
 114 20.044550 10.4.0.2 10.3.0.253 TCP 49401 > ipp [ACK]
 115 20.046314 10.3.0.253 10.4.0.2 IPP IPP response
 116 20.046334 10.4.0.2 10.3.0.253 TCP 49401 > ipp [ACK]
 117 20.046371 10.4.0.2 10.3.0.253 TCP 49401 > ipp [FIN, ACK]
 118 20.046790 10.3.0.253 10.4.0.2 TCP ipp > 49401 [FIN, ACK]
 119 20.046799 10.4.0.2 10.3.0.253 TCP 49401 > ipp [ACK]
 120 20.877303 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 121 21.877192 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 122 22.877005 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 123 23.876901 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 124 24.876789 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 125 25.050006 10.4.0.2 10.3.0.253 TCP 49402 > ipp [SYN]
 126 25.050460 10.3.0.253 10.4.0.2 TCP ipp > 49402 [SYN, ACK]
 127 25.050477 10.4.0.2 10.3.0.253 TCP 49402 > ipp [ACK]
 128 25.050533 10.4.0.2 10.3.0.253 HTTP POST / HTTP/1.1
 129 25.050539 10.4.0.2 10.3.0.253 HTTP Continuation
 130 25.050545 10.4.0.2 10.3.0.253 HTTP Continuation
 131 25.050990 10.3.0.253 10.4.0.2 TCP ipp > 49402 [ACK]
 132 25.051010 10.3.0.253 10.4.0.2 TCP ipp > 49402 [ACK]
 133 25.051024 10.3.0.253 10.4.0.2 TCP ipp > 49402 [ACK]
 134 25.051062 10.4.0.2 10.3.0.253 IPP IPP request
 135 25.052197 10.3.0.253 10.4.0.2 TCP ipp > 49402 [ACK]
 136 25.052443 10.3.0.253 10.4.0.2 HTTP HTTP/1.1 200 OK
 137 25.052464 10.4.0.2 10.3.0.253 TCP 49402 > ipp [ACK]
 138 25.052510 10.3.0.253 10.4.0.2 HTTP Continuation
 139 25.052511 10.3.0.253 10.4.0.2 HTTP Continuation
 140 25.052542 10.4.0.2 10.3.0.253 TCP 49402 > ipp [ACK]
 141 25.052546 10.4.0.2 10.3.0.253 TCP 49402 > ipp [ACK]
 142 25.054302 10.3.0.253 10.4.0.2 IPP IPP response
 143 25.054322 10.4.0.2 10.3.0.253 TCP 49402 > ipp [ACK]
 144 25.054347 10.4.0.2 10.3.0.253 TCP 49402 > ipp [FIN, ACK]
 145 25.054732 10.3.0.253 10.4.0.2 TCP ipp > 49402 [FIN, ACK]
 146 25.054742 10.4.0.2 10.3.0.253 TCP 49402 > ipp [ACK]
 147 25.876683 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 148 26.876551 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 149 27.876440 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 150 28.876331 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 151 29.876222 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 152 30.043114 Intel_d3:cb:73 Intel_d3:d2:a0 ARP Who has 10.4.0.2? Tel
 153 30.043136 Intel_d3:d2:a0 Intel_d3:cb:73 ARP 10.4.0.2 is at 00:02:b
 154 30.060002 10.4.0.2 10.3.0.253 TCP 49403 > ipp [SYN]
 155 30.060446 10.3.0.253 10.4.0.2 TCP ipp > 49403 [SYN, ACK]
 156 30.060464 10.4.0.2 10.3.0.253 TCP 49403 > ipp [ACK]
 157 30.060521 10.4.0.2 10.3.0.253 HTTP POST / HTTP/1.1
 158 30.060528 10.4.0.2 10.3.0.253 HTTP Continuation
 159 30.060931 10.3.0.253 10.4.0.2 TCP ipp > 49403 [ACK]
 160 30.060944 10.3.0.253 10.4.0.2 TCP ipp > 49403 [ACK]

 87

 161 30.060978 10.4.0.2 10.3.0.253 IPP IPP request
 162 30.062130 10.3.0.253 10.4.0.2 TCP ipp > 49403 [ACK]
 163 30.062377 10.3.0.253 10.4.0.2 HTTP HTTP/1.1 200 OK
 164 30.062398 10.4.0.2 10.3.0.253 TCP 49403 > ipp [ACK]
 165 30.062456 10.3.0.253 10.4.0.2 HTTP Continuation
 166 30.062457 10.3.0.253 10.4.0.2 HTTP Continuation
 167 30.062488 10.4.0.2 10.3.0.253 TCP 49403 > ipp [ACK]
 168 30.062491 10.4.0.2 10.3.0.253 TCP 49403 > ipp [ACK]
 169 30.064244 10.3.0.253 10.4.0.2 IPP IPP response
 170 30.064264 10.4.0.2 10.3.0.253 TCP 49403 > ipp [ACK]
 171 30.064289 10.4.0.2 10.3.0.253 TCP 49403 > ipp [FIN, ACK]
 172 30.064666 10.3.0.253 10.4.0.2 TCP ipp > 49403 [FIN, ACK]
 173 30.064675 10.4.0.2 10.3.0.253 TCP 49403 > ipp [ACK]
 174 30.876104 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 175 31.875991 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 176 32.875886 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 177 33.875837 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 178 34.243652 Hewlett-_43:2e:a6 CDP/VTP CDP Cisco Discovery Protoc
 179 34.875731 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 180 35.070006 10.4.0.2 10.3.0.253 TCP 49404 > ipp [SYN]
 181 35.070452 10.3.0.253 10.4.0.2 TCP ipp > 49404 [SYN, ACK]
 182 35.070468 10.4.0.2 10.3.0.253 TCP 49404 > ipp [ACK]
 183 35.070526 10.4.0.2 10.3.0.253 HTTP POST / HTTP/1.1
 184 35.070532 10.4.0.2 10.3.0.253 HTTP Continuation
 185 35.070537 10.4.0.2 10.3.0.253 HTTP Continuation
 186 35.070966 10.3.0.253 10.4.0.2 TCP ipp > 49404 [ACK]
 187 35.070969 10.3.0.253 10.4.0.2 TCP ipp > 49404 [ACK]
 188 35.071021 10.3.0.253 10.4.0.2 TCP ipp > 49404 [ACK]
 189 35.071030 10.4.0.2 10.3.0.253 IPP IPP request
 190 35.072755 10.3.0.253 10.4.0.2 TCP ipp > 49404 [ACK]
 191 35.073034 10.3.0.253 10.4.0.2 HTTP HTTP/1.1 200 OK
 192 35.073055 10.4.0.2 10.3.0.253 TCP 49404 > ipp [ACK]
 193 35.073095 10.3.0.253 10.4.0.2 HTTP Continuation
 194 35.073096 10.3.0.253 10.4.0.2 HTTP Continuation
 195 35.073133 10.4.0.2 10.3.0.253 TCP 49404 > ipp [ACK]
 196 35.073137 10.4.0.2 10.3.0.253 TCP 49404 > ipp [ACK]
 197 35.074894 10.3.0.253 10.4.0.2 IPP IPP response
 198 35.074914 10.4.0.2 10.3.0.253 TCP 49404 > ipp [ACK]
 199 35.074939 10.4.0.2 10.3.0.253 TCP 49404 > ipp [FIN, ACK]
 200 35.075330 10.3.0.253 10.4.0.2 TCP ipp > 49404 [FIN, ACK]
 201 35.075340 10.4.0.2 10.3.0.253 TCP 49404 > ipp [ACK]
 202 35.875541 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 203 36.875504 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 204 37.875388 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 205 38.875277 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 206 39.875094 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 207 40.079993 10.4.0.2 10.3.0.253 TCP 49405 > ipp [SYN]
 208 40.080446 10.3.0.253 10.4.0.2 TCP ipp > 49405 [SYN, ACK]
 209 40.080462 10.4.0.2 10.3.0.253 TCP 49405 > ipp [ACK]
 210 40.080518 10.4.0.2 10.3.0.253 HTTP POST / HTTP/1.1
 211 40.080524 10.4.0.2 10.3.0.253 HTTP Continuation
 212 40.080530 10.4.0.2 10.3.0.253 HTTP Continuation
 213 40.080986 10.3.0.253 10.4.0.2 TCP ipp > 49405 [ACK]
 214 40.081001 10.3.0.253 10.4.0.2 TCP ipp > 49405 [ACK]
 215 40.081003 10.3.0.253 10.4.0.2 TCP ipp > 49405 [ACK]
 216 40.081046 10.4.0.2 10.3.0.253 IPP IPP request

 88

 217 40.082180 10.3.0.253 10.4.0.2 TCP ipp > 49405 [ACK]
 218 40.083413 10.3.0.253 10.4.0.2 HTTP HTTP/1.1 200 OK
 219 40.083434 10.4.0.2 10.3.0.253 TCP 49405 > ipp [ACK]
 220 40.083484 10.3.0.253 10.4.0.2 HTTP Continuation
 221 40.083498 10.3.0.253 10.4.0.2 HTTP Continuation
 222 40.083529 10.4.0.2 10.3.0.253 TCP 49405 > ipp [ACK]
 223 40.083532 10.4.0.2 10.3.0.253 TCP 49405 > ipp [ACK]
 224 40.085276 10.3.0.253 10.4.0.2 IPP IPP response
 225 40.085296 10.4.0.2 10.3.0.253 TCP 49405 > ipp [ACK]
 226 40.085321 10.4.0.2 10.3.0.253 TCP 49405 > ipp [FIN, ACK]
 227 40.085727 10.3.0.253 10.4.0.2 TCP ipp > 49405 [FIN, ACK]
 228 40.085736 10.4.0.2 10.3.0.253 TCP 49405 > ipp [ACK]

Ethereal Output Hubble

No. Time Source Destination Protocol Info
 1 0.000000 Hewlett-_43:2e:a2 CDP/VTP CDP Cisco Discovery Protocol
 2 37.605449 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 3 38.617318 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 4 39.618810 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 5 40.618870 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 6 41.618898 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 7 42.597264 Intel_d3:d2:79 Intel_d3:d2:9f ARP Who has 10.1.0.2? Tell 10.1.0.1
 8 42.597392 Intel_d3:d2:9f Intel_d3:d2:79 ARP 10.1.0.2 is at 00:02:b3:d3:d2:9f
 9 42.637286 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 10 43.637369 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 11 44.637294 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 12 45.637302 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 13 46.637369 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 14 47.637369 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 15 48.637295 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 16 49.637303 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 17 50.637304 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 18 51.637302 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 19 52.637293 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 20 53.637293 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 21 54.637297 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 22 55.637300 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 23 56.637294 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 24 57.637292 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 25 58.637301 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 26 59.637363 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 27 60.003429 Hewlett-_43:2e:a2 CDP/VTP CDP Cisco Discovery Protocol
 28 60.637370 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 29 61.637293 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 30 62.637369 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 31 63.637364 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 32 64.637365 11.13.0.1 10.3.0.254 ICMP Echo (ping) request
 33 65.637294 11.13.0.1 10.3.0.254 ICMP Echo (ping) request

Thus as can be seen no packet was able to pass through Erwin

 89

Test Case Six

We will now verify test case six by showing that a spoofing hosts packets are dropped even if the
address does exist on the network which in this case is 10.13.0.1 (Franklin)

We will first see Erwin’s Kernel messages log file

/var/log/messages

Dec 6 16:05:39 erwin syslogd 1.4.1: restart.
Dec 6 16:05:39 erwin syslog: syslogd startup succeeded
Dec 6 16:05:39 erwin kernel: klogd 1.4.1, log source = /proc/kmsg started.
Dec 6 16:05:39 erwin syslog: klogd startup succeeded
Dec 6 16:05:39 erwin syslog: syslogd shutdown succeeded
Dec 6 16:06:06 erwin kernel: IN new connecetionIN new ICMP send
Dec 6 16:06:06 erwin kernel:
Dec 6 16:06:06 erwin kernel:
Dec 6 16:06:06 erwin kernel: Packet AcceptedSource Address is fa00030a
Dec 6 16:06:06 erwin kernel: Destination Address is 1000040a
Dec 6 16:06:06 erwin kernel: Packet Displayeddevice IP Address is fd00060a
Dec 6 16:06:06 erwin kernel: Packet Displayeddevice IP Address is 100040a
Dec 6 16:06:26 erwin kernel: Destination Address is fd00030a
Dec 6 16:06:26 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 16:06:26 erwin kernel: Destination Address is 200040a
Dec 6 16:06:26 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 16:06:26 erwin kernel: Destination Address is fd00030a
Dec 6 16:06:26 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 16:06:26 erwin kernel: Destination Address is fd00030a
Dec 6 16:06:26 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 16:06:26 erwin kernel: Destination Address is 200040a
Dec 6 16:06:26 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 16:06:26 erwin kernel: Destination Address is fd00030a
Dec 6 16:06:27 erwin kernel: IN new connecetionIN new ICMP send
Dec 6 16:06:27 erwin kernel:
Dec 6 16:06:27 erwin kernel:
Dec 6 16:06:27 erwin kernel: Packet AcceptedSource Address is 1000d0a
Dec 6 16:06:27 erwin kernel: Destination Address is fe00030a
Dec 6 16:06:27 erwin kernel: Packet Displayeddevice IP Address is fd00060a
Dec 6 16:06:27 erwin kernel: Packet Displayeddevice IP Address is 100040a
Dec 6 16:06:28 erwin kernel: IN new connecetionPacket AcceptedSource Address is 1000d0a
Dec 6 16:06:28 erwin kernel: Destination Address is fe00030a
Dec 6 16:06:29 erwin kernel: IN new connecetionPacket AcceptedSource Address is 1000d0a
Dec 6 16:06:29 erwin kernel: Destination Address is fe00030a
Dec 6 16:06:30 erwin kernel: IN new connecetionPacket AcceptedSource Address is 1000d0a
Dec 6 16:06:30 erwin kernel: Destination Address is fe00030a
Dec 6 16:06:31 erwin kernel: IN new connecetionPacket AcceptedSource Address is 200040a
Dec 6 16:06:31 erwin kernel: Destination Address is fd00030a
Dec 6 16:06:31 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 16:06:31 erwin kernel: Destination Address is 200040a
Dec 6 16:06:31 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 16:06:31 erwin kernel: Destination Address is fd00030a
Dec 6 16:06:31 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 16:06:31 erwin kernel: Destination Address is fd00030a
Dec 6 16:06:31 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a

 90

Dec 6 16:06:31 erwin kernel: Destination Address is fd00030a
Dec 6 16:06:31 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 16:06:31 erwin kernel: Destination Address is fd00030a
Dec 6 16:06:31 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 16:06:31 erwin kernel: Destination Address is 200040a
Dec 6 16:06:31 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 16:06:31 erwin kernel: Destination Address is 200040a
Dec 6 16:06:31 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 16:06:31 erwin kernel: Destination Address is 200040a
Dec 6 16:06:31 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 16:06:31 erwin kernel: Destination Address is fd00030a
Dec 6 16:06:31 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 16:06:31 erwin kernel: Destination Address is 200040a
Dec 6 16:06:31 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 16:06:31 erwin kernel: Destination Address is 200040a
Dec 6 16:06:31 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 16:06:31 erwin kernel: Destination Address is 200040a
Dec 6 16:06:31 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 16:06:31 erwin kernel: Destination Address is 200040a
Dec 6 16:06:31 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 16:06:31 erwin kernel: Destination Address is fd00030a
Dec 6 16:06:31 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 16:06:31 erwin kernel: Destination Address is fd00030a
Dec 6 16:06:31 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 16:06:31 erwin kernel: Destination Address is fd00030a
Dec 6 16:06:31 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 16:06:31 erwin kernel: Destination Address is 200040a
Dec 6 16:06:31 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 16:06:31 erwin kernel: Destination Address is fd00030a
Dec 6 16:06:31 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 16:06:31 erwin kernel: Destination Address is fd00030a
Dec 6 16:06:31 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 16:06:31 erwin kernel: Destination Address is 200040a
Dec 6 16:06:38 erwin kernel: IN new connecetionIN packet dropper
Dec 6 16:06:38 erwin kernel: Packet DroppedSource Address is 1000d0a
Dec 6 16:06:38 erwin kernel: Destination Address is fe00030a
Dec 6 16:06:39 erwin kernel: IN new connecetionIN packet dropper
Dec 6 16:06:39 erwin kernel: Packet DroppedSource Address is 1000d0a
Dec 6 16:06:39 erwin kernel: Destination Address is fe00030a
Dec 6 16:06:40 erwin kernel: IN new connecetionIN packet dropper
Dec 6 16:06:40 erwin kernel: Packet DroppedSource Address is 1000d0a
Dec 6 16:06:40 erwin kernel: Destination Address is fe00030a
Dec 6 16:06:41 erwin kernel: IN new connecetionPacket AcceptedSource Address is 200040a
Dec 6 16:06:41 erwin kernel: Destination Address is fd00030a
Dec 6 16:06:41 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 16:06:41 erwin kernel: Destination Address is 200040a
Dec 6 16:06:41 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 16:06:41 erwin kernel: Destination Address is fd00030a
Dec 6 16:06:41 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 16:06:41 erwin kernel: Destination Address is fd00030a
Dec 6 16:06:41 erwin kernel: IN new connecetionIN packet dropper
Dec 6 16:06:41 erwin kernel: Packet DroppedSource Address is 1000d0a
Dec 6 16:06:41 erwin kernel: Destination Address is fe00030a
Dec 6 16:07:41 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 16:07:41 erwin kernel: Destination Address is fd00030a
Dec 6 16:07:41 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a

 91

Dec 6 16:07:41 erwin kernel: Destination Address is fd00030a
Dec 6 16:07:41 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 16:07:41 erwin kernel: Destination Address is 200040a
Dec 6 16:07:41 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 16:07:41 erwin kernel: Destination Address is fd00030a
Dec 6 16:07:41 erwin kernel: IN new connecetionIN packet dropper
Dec 6 16:07:41 erwin kernel: Packet DroppedSource Address is 1000d0a
Dec 6 16:07:41 erwin kernel: Destination Address is fe00030a
Dec 6 16:07:42 erwin kernel: IN new connecetionIN packet dropper
Dec 6 16:07:42 erwin kernel: Packet DroppedSource Address is 1000d0a
Dec 6 16:07:42 erwin kernel: Destination Address is fe00030a
Dec 6 16:07:43 erwin kernel: IN new connecetionIN packet dropper
Dec 6 16:07:43 erwin kernel: Packet DroppedSource Address is 1000d0a
Dec 6 16:07:43 erwin kernel: Destination Address is fe00030a
Dec 6 16:07:44 erwin kernel: IN new connecetionIN packet dropper
Dec 6 16:07:44 erwin kernel: Packet DroppedSource Address is 1000d0a
Dec 6 16:07:44 erwin kernel: Destination Address is fe00030a
Dec 6 16:07:45 erwin kernel: IN new connecetionIN packet dropper
Dec 6 16:07:45 erwin kernel: Packet DroppedSource Address is 1000d0a
Dec 6 16:07:45 erwin kernel: Destination Address is fe00030a
Dec 6 16:07:46 erwin kernel: IN new connecetionPacket AcceptedSource Address is 200040a
Dec 6 16:07:46 erwin kernel: Destination Address is fd00030a
Dec 6 16:07:46 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 16:07:46 erwin kernel: Destination Address is 200040a
Dec 6 16:07:46 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 16:07:46 erwin kernel: Destination Address is fd00030a
Dec 6 16:07:46 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 16:07:46 erwin kernel: Destination Address is fd00030a
Dec 6 16:07:46 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 16:07:46 erwin kernel: Destination Address is 200040a
Dec 6 16:07:46 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 16:07:46 erwin kernel: Destination Address is fd00030a
Dec 6 16:07:46 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 16:07:46 erwin kernel: Destination Address is fd00030a
Dec 6 16:07:46 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 16:07:46 erwin kernel: Destination Address is 200040a
Dec 6 16:07:46 erwin kernel: IN old connecetionPacket Accepted Source Address is 200040a
Dec 6 16:07:46 erwin kernel: Destination Address is fd00030a
Dec 6 16:07:46 erwin kernel: IN new connecetionIN packet dropper
Dec 6 16:07:46 erwin kernel: Packet DroppedSource Address is 1000d0a
Dec 6 16:07:46 erwin kernel: Destination Address is fe00030a
Dec 6 16:07:51 erwin kernel: IN new connecetionPacket AcceptedSource Address is 200040a
Dec 6 16:07:51 erwin kernel: Destination Address is fd00030a
Dec 6 16:07:51 erwin kernel: Packet Accepted due to conditionSource Address is fd00030a
Dec 6 16:07:51 erwin kernel: Destination Address is 200040a

Thus as it is seen Erwin does not allow known IP addresses but from the wrong interface

This can also be seen from the output of the ethereal file of Hubble

 92

Ethereal File of Hubble

No. Time Source Destination Protocol Info
 1 0.000000 Hewlett-_43:2e:a2 CDP/VTP CDP Cisco Discovery Protocol
 2 44.045435 10.13.0.1 10.3.0.254 ICMP Echo (ping) request
 3 45.045307 10.13.0.1 10.3.0.254 ICMP Echo (ping) request
 4 46.045307 10.13.0.1 10.3.0.254 ICMP Echo (ping) request
 5 47.045400 10.13.0.1 10.3.0.254 ICMP Echo (ping) request
 6 48.045459 10.13.0.1 10.3.0.254 ICMP Echo (ping) request
 7 49.042799 Intel_d3:d2:79 Intel_d3:d2:9f ARP Who has 10.1.0.2? Tell 10.1.0.1
 8 49.042927 Intel_d3:d2:9f Intel_d3:d2:79 ARP 10.1.0.2 is at 00:02:b3:d3:d2:9f
 9 49.062830 10.13.0.1 10.3.0.254 ICMP Echo (ping) request
 10 50.062829 10.13.0.1 10.3.0.254 ICMP Echo (ping) request
 11 51.062828 10.13.0.1 10.3.0.254 ICMP Echo (ping) request
 12 52.062829 10.13.0.1 10.3.0.254 ICMP Echo (ping) request
 13 53.062830 10.13.0.1 10.3.0.254 ICMP Echo (ping) request
 14 54.062830 10.13.0.1 10.3.0.254 ICMP Echo (ping) request
 15 55.062829 10.13.0.1 10.3.0.254 ICMP Echo (ping) request
 16 56.062830 10.13.0.1 10.3.0.254 ICMP Echo (ping) request
 17 57.062830 10.13.0.1 10.3.0.254 ICMP Echo (ping) request
 18 58.062831 10.13.0.1 10.3.0.254 ICMP Echo (ping) request
 19 60.003309 Hewlett-_43:2e:a2 CDP/VTP CDP Cisco Discovery Protocol
 20 117.795225 10.13.0.1 10.3.0.254 ICMP Echo (ping) request
 21 118.812820 10.13.0.1 10.3.0.254 ICMP Echo (ping) request
 22 119.813294 10.13.0.1 10.3.0.254 ICMP Echo (ping) request
 23 120.006084 Hewlett-_43:2e:a2 CDP/VTP CDP Cisco Discovery Protocol
 24 120.812830 10.13.0.1 10.3.0.254 ICMP Echo (ping) request
 25 121.813298 10.13.0.1 10.3.0.254 ICMP Echo (ping) request
 26 122.792798 Intel_d3:d2:79 Intel_d3:d2:9f ARP Who has 10.1.0.2? Tell
10.1.0.1
 27 122.792939 Intel_d3:d2:9f Intel_d3:d2:79 ARP 10.1.0.2 is at 00:02:b3:d3:d2:9f
 28 122.812824 10.13.0.1 10.3.0.254 ICMP Echo (ping) request
 29 131.932207 10.13.0.1 10.3.0.254 TCP 33277 > ftp [SYN]
 30 134.922811 10.13.0.1 10.3.0.254 TCP 33277 > ftp [SYN]

 93

9 Conclusions

9.1 Summary

The module was designed to rectify the fault that source addresses are not checked to be valid or
not and as shown by the test results was able to successfully rectify the fault. This was done by
using Loadable Linux Kernel Modules, Net Filter hooks and Connection Tracking. There were two
lists maintained by the system The first list stored all the different source addresses of the
packets that were seen by this router, This list also stored information of the source address i.e.
the device where the packet came from and whether they are valid or not thus for every new
connection that was seen this list was traversed for the proper source address and validated. If it
was not valid then the packets were blocked and no further packets were allowed to go through. If
the source address was seen for the first time then the address was first checked with the
neighbor table i.e. the table which stores the machines which are directly connected to this router
to verify whether the packet was from a neighbor or not if it was not from a neighbor then the
address was stored in the master list with the device and a temporary value that it was not valid
but was in the process of being verified. For verification an ICMP_ECHOREQUEST is sent to the
original source using the second list which stores the various IP addresses of the router and the
devices that are associated with these IP addresses. This list is maintained by a function
registered in the NF_IP_LOCAL_IN hook of the net filter facility which extracts the destination
address from the incoming packets and the device from which the packet has come from. This is
all done in a function that is registered in the NF_IP_FORWARD hook of the net filter facility. If
the source address of the packet is valid then the original source of the new connection packet
would reply back by an ICMP packet that has the code set as ICMP_ECHOREPLY which would
then be caught by another function that has also been registered in the NF_IP_LOCAL_IN hook,
This function would then update the source address list and change the source address from
being invalid to valid and discard the temporary invalid status This would be done if and only if
the packet has arrived from the device that the original packet came from. Thus as proved by
testing source address spoofing can be successfully eliminated

 94

9.2 Problems Encountered and Solved

The problems encountered were

• The module did not compile properly, the solution for this was that the compiler did not
have the proper parameters namely gcc -I/usr/src/linux/include -O2 -D__KERNEL__ -
Wall while compiling the module and once given the module compiled perfectly

• Once compiled the module while loading gave errors that the kernel version was different
and not compiled for the base kernel, The solution for this was to change the parameter
ExtraVersions in the /usr/src/linux/MAKEFILE to match the current kernel and then give
the make command for this file so that the modules were updated

• The biggest problem was how to send the ICMP packet, there are three ways to achieve
it in the Linux kernel

1. Manufacturing a new packet and sending it back to the original source. This way
was not achieved as the sending function (dev_xmit()) would reject the packet.

2. The second way was to use a program based in user space and send the packet
from there. This can be achieved by using a function known as
call_usermodehelper(), The problem with this function is however that it can be
only called in the process mode while the module runs in the interrupt mode, for
this the function had to be scheduled by using the system call schedule_task()
This is achieved by the code given below

 static void newicmppacket(char * newadd)
 {

 char *argv [4] ;
 char **envp;
 char *buff;
 char *buff1;
 int i=0;
 envp = (char **) kmalloc (60 * sizeof (char *), GFP_KERNEL);
 envp[i++]="HOME=/";
 envp[i++]="TERM=linux";
 envp[i++]= "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
 envp[i++]="SHELL=/bin/bash";
 envp[i++]="DEBUG=kernel";
 envp [i] = 0;
 buff1 = kmalloc(256, GFP_KERNEL);
 argv[0]= "/sbin/ping_packet_new";
 sprintf(buff,"%x",newadd->dadd);
 argv[1]=buff;
 sprintf(buff1,"%x",newadd->sadd);
 argv[2]=buff1;
 argv [3]=0;
 i = call_usermodehelper(argv[0],argv, envp);
 kfree (buff);
 kfree (envp);
 kfree (buff1);
 }

 95

void schedule_system_call (struct addresspass *newadd)
{

 my_task.routine=newicmppacket;
 my_task.data=newadd;
 schedule_task(&my_task);

}

This would schedule a process call when the system comes back from the
interrupt mode. This approach however does not work as the character pointer of
the structure my_task gets destroyed or corrupted leading to system failure

3. The third approach is to use the icmp_send function in

/usr/src/linux/net/ipv4/icmp.c for this however we have to manipulate the packet
to make it of this host i.e. make it of the type PACKET_HOST from the type
PACKET_OTHERHOST and also change the source and destination addresses.
This approach works and then was integrated into the module

• The module also kept crashing and the callback trace revealed that the module crashed

due to access to a NULL space. This was corrected by correcting the logic of accessing
the link list.

• Connection Tracking did not work, for this the connection tracking module had to be
loaded into the kernel first

• During Testing the Spoofing code would not work properly due to the fact that when the
IP address was changed the checksum of both the IP header and the TCP header got
wrong and thus the packet got dropped. To correct this checksum of both the TCP
pseudo header and the IP header had to be recomputed.

9.3 Suggestions for Future Extensions to Project

The project can be extended as and when the problem of source address spoofing of the
neighbor is solved to include the functionality of how to prevent spoofing from the same subnet as
the victim source and the spoofing source.

 96

Glossary

LKM - Loadable Kernel Module
ACK - Acknowledgment
API - Application Programming Interface
ARP - Address Resolution Protocol
ATM - Asynchronous Transfer Mode
ECN - Explicit Congestion Notification
FIB - Forward Information Base
ICMP - Internet Control Message Protocol
I/O - Input/Output
IP - Internet Protocol
IPv4 - IP version 4
IPv6 - IP version 6
LAN - Local Area Network
MAC - Media Access Control
MSS - Maximum Segment Size
RFC - Request For Comment
RTT - Round Trip Time
SYN - Synchronize of the TCP Protocol
TCP - Transmission Control Protocol
UDP - User Datagram Protocol

 97

Bibliography

[1]Peter Burden
Routing in the network
http://www.scit.wlv.ac.uk/~jphb/comms/iproute.html

[2] L. Todd Heberlein, Matt Bishop
Address Spoofing
http://seclab.cs.ucdavis.edu/papers/spoof-paper.pdf

[3] Morris, R.T.
A Weakness in the 4.2BSD Unix TCP/IP Software
Computing Science Technical Report
No. 117, AT&T Bell Laboratories,
Murray Hill, New Jersey.

[4]Roger S. Pressman
Software Engineering -5th Edition

[5]Behrouz A. Forouzan 2003
TCP/IP Protocol Suite – 2nd Edition

[6] Bryan Henderson
Linux Loadable Kernel Module HOWTO
http://www.tldp.org/HOWTO/Module-HOWTO/x49.html

[7]
The Net Filter Facility
www.cs.clemson.edu/~westall/881/notes/netfilter.pdf

[8] M. Rio et al.
A Map of the Networking Code in Linux Kernel 2.4.20
Technical Report DataTAG-2004-1, 31 March 2004

[9] Glenn Herrin
Linux IP Networking: A Guide to the Implementation and Modification of the Linux Protocol Stack
http://www.kernelnewbies.org/documents/ipnetworking/linuxipnetworking.html

 98

Appendices

Appendix A

Spoofing of Source Address Code

To test the prevention of address the module had to be tested by actually spoofing the source
address by using the code given below

#define MODULE
//header files
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/ip.h>
#include <linux/netfilter.h>
#include <linux/netfilter_ipv4.h>
#include <net/ip.h>
#include <asm-i386/checksum.h>
#include <net/tcp.h>

static struct nf_hook_ops nfho;
//netfilter hooks structure to register hooks

unsigned int spoofipfake(unsigned int hooknum, struct sk_buff **skb,
 const struct net_device *in,
 const struct net_device *out,
 int (*okfn)(struct sk_buff *))
{

 struct sk_buff *sb = *skb;

 int len = sb->nh.iph->ihl;
 //get length of the IP header
 __u32 fakeip = 0x01000d0a;
 //fake address to be put into the source address of the packet

 sb->nh.iph->saddr= fakeip;
 //insert fake address
 len = len*4;
 //get length of the packet in bytes

 99

 struct iphdr *ip = sb->nh.iph;
 //get IP header
 //if the packet is of TCP protocol
 if(sb->nh.iph->protocol==IPPROTO_TCP)
 {
 int len1 = sb->len-sb->nh.iph->ihl*4;
 //get actual length of the TCP packet
 struct tcphdr *tcp;
 //TCP header decleration to store TCP header
 struct sock *sk = sb->sk;
 // get the socket from the sk_buff
 sk->saddr=fakeip;
 //change saddr in socket also
 tcp = (struct tcphdr *)(sb->data+sb->nh.iph->ihl*4);
 //get TCP header from IP packet data
 tcp->check=0;
 //set checksum field to 0

 tcp_v4_send_check(sk,tcp,len1,sb);

 //calculate the tcp header checksum

 }

 ip->check=0;
 //set IP header checksum to 0
 ip->check=ip_fast_csum((unsigned char *)ip,ip->ihl);
 //Calculate the checksum of the IP header
 return NF_ACCEPT;
 }

int init_module()
{
 //fill in hook structure and register hook
 nfho.hook = spoofipfake;
 nfho.hooknum = NF_IP_POST_ROUTING;
 nfho.pf = PF_INET;
 nfho.priority = NF_IP_PRI_FIRST;
 nf_register_hook(&nfho);
 return 0;
}
void cleanup_module()
{
 //unregister hook
 nf_unregister_hook(&nfho);

 }

 100

Program Listings

#define MODULE
//Header Files
#include <linux/module.h>
#include <linux/kernel.h>
#include<linux/skbuff.h>
#include<linux/netfilter.h>
#include<linux/netfilter_ipv4.h>
#include<linux/ip.h>
#include <net/arp.h>
#include<linux/inetdevice.h>
#include<net/dst.h>
#include<net/neighbour.h>
#include<linux/slab.h>
#include<linux/list.h>
#include<net/icmp.h>
#include <linux/netfilter_ipv4/ip_conntrack_core.h>
#include <linux/types.h>
#include <linux/kmod.h>
#include <linux/proc_fs.h>
#include <net/checksum.h>
#include <linux/bitops.h>
#include <linux/version.h>
#include <linux/netfilter_ipv4/ip_tables.h>
#include <linux/netfilter_ipv4/ip_nat.h>
#include <linux/netfilter_ipv4/ip_nat_core.h>
#include <linux/netfilter_ipv4/ip_nat_rule.h>

static struct nf_hook_ops prevspoof; //Structure to Register Hooks
static struct nf_hook_ops ipadd;
static struct nf_hook_ops checkic;

//Structure to store Interface and Associated IP address
struct interf_add
{

 struct net_device *interface_dev;
 u32 interf_ip;
 struct interf_add *next;
};

struct interf_add *curr_interf_add=NULL,*foll_interf_add=NULL;
static struct interf_add *head_local=NULL;

//Structure to store Valid and Invalid IP addresses
struct ip_known
{

 101

 struct net_device *ip_in_dev;
 u32 ip_store;
 int valid;
 int no_pack;
 struct ip_known *next;
};

struct ip_known *newip_known=NULL,*ip_knownfoll=NULL;
static struct ip_known *ip_head = NULL;

 //Function to send ICMP_ECHO packet
 static void send_ping(u32 dadd,u32 sadd, struct sk_buff *skb_in)
{
 skb_in->pkt_type=PACKET_HOST;
 //Change Packet Type as icmp_send checks for PACKET_HOST or PACKET_OTHERHOST
 skb_in->nh.iph->saddr=dadd;
 //Interchange saddr and daddr as icmp_send changes it
 skb_in->nh.iph->daddr=sadd;
 icmp_send(skb_in, ICMP_ECHO, 0, 0);
 //Call icmp_send in icmp.c with code as ICMP_ECHO
}

unsigned int icmp_check(unsigned int hooknum, struct sk_buff **skb,
 const struct net_device *in,
 const struct net_device *out,
 int (*okfn)(struct sk_buff *))
{
 struct sk_buff *sb = *skb;

 struct icmphdr *icmp;
 //icmp header type to store icmp header we take out of the IP packet
 //check for the protocol of the incoming packet is of type ICMP
 if(sb->nh.iph->protocol != IPPROTO_ICMP)
 return NF_ACCEPT;

 //extract the icmp header from the data of the IP packet
 icmp = (struct icmphdr *) (sb->data + sb->nh.iph->ihl * 4);
 //if the packet is of the type sent in reply of an ICMP_ECHO
 if(icmp->type!=ICMP_ECHOREPLY)
 return NF_ACCEPT;
 //Check list and make the packet valid if found
 if(ip_head!=NULL)
 {
 newip_known=ip_head;
 while(newip_known!=NULL)
 {
 if(newip_known->ip_store==sb->nh.iph->saddr)
 {
 if(sb->dev==newip_known->ip_in_dev)
 {
 newip_known->valid=1;
 return NF_ACCEPT;
 }
 }

 102

 newip_known=newip_known->next;
 }

 }

 return NF_ACCEPT;
 }

unsigned int get_local_add(unsigned int hooknum, struct sk_buff **skb,
 const struct net_device *in,
 const struct net_device *out,
 int (*okfn)(struct sk_buff *))
{
 int flag=0;
 struct sk_buff *sb = *skb;
 //check list and add to the list if interface not found
 if(head_local==NULL)
 {

 curr_interf_add=(struct interf_add*)kmalloc(sizeof(struct interf_add),GFP_KERNEL);
 if(curr_interf_add==NULL)
 {
 return NF_ACCEPT;
 }

 curr_interf_add->interface_dev=sb->dev;
 curr_interf_add->interf_ip=sb->nh.iph->daddr;
 curr_interf_add->next=NULL;
 head_local=curr_interf_add;
 }

 else
 {
 flag=0;
 curr_interf_add=head_local;

 while(curr_interf_add!=NULL)
 {
 if(curr_interf_add->interface_dev==sb->dev)
 {
 return NF_ACCEPT;
 }
 foll_interf_add=curr_interf_add;
 curr_interf_add=curr_interf_add->next;

 }

 curr_interf_add=(struct interf_add*)kmalloc(sizeof(struct interf_add),GFP_KERNEL);
 if(curr_interf_add==NULL)
 {
 return NF_ACCEPT;
 }
 curr_interf_add->interface_dev=sb->dev;
 curr_interf_add->interf_ip=sb->nh.iph->daddr;

 103

 curr_interf_add->next=NULL;
 foll_interf_add->next=curr_interf_add;

 }

 return NF_ACCEPT;
}

unsigned int prev_addr_spoof(unsigned int hooknum, struct sk_buff **skb,
 const struct net_device *in,
 const struct net_device *out,
 int (*okfn)(struct sk_buff *))

{
 struct sk_buff *sb = *skb;
 //declare structure of type neighbour to check the neighbour table
 struct neighbour *neigh;
 //get the incoming interface of the packet
 struct net_device *indev = sb->dev;

 int pingsend=0;

 //get source address
 u32 ip_source = sb->nh.iph->saddr;
 //get destination address
 u32 ip_destination = sb->nh.iph->daddr;
 u32 ip_saddr=0;
 //connection tracking structure which would decide if new connection
 struct ip_conntrack *connect;
 //enumerated type pointing to the connection type of the packet
 enum ip_conntrack_info connect_info;

 if(ip_source&&ip_destination)
 {
 //ip_conntrack_get takes the sk_buff and fills in the field connect_info with the proper
 //connection value
 connect = ip_conntrack_get(*skb, &connect_info);
 //if the packet of a new connection
 if(connect_info==IP_CT_NEW)
 {
 //lookup the neighbour table i.e. the arp table for the source IP address and
incoming device
 neigh = neigh_lookup(&arp_tbl, &ip_source, indev);

 if(neigh!=NULL)
 {
 neigh_release(neigh);
 return NF_ACCEPT;
 }
 //if not in the neighbour table check the list and update it if not found
 //if found but not valid then drop the packet

 if(head_local!=NULL)
 {

 104

 curr_interf_add=head_local;

 while(curr_interf_add!=NULL)
 {
 pingsend=0;
 if(curr_interf_add->interface_dev==sb->dev)
 {
 ip_saddr=curr_interf_add->interf_ip;

 if(ip_head==NULL)
 {
 newip_known=(struct ip_known*)kmalloc(sizeof(struct
ip_known),GFP_KERNEL);
 newip_known->ip_store=ip_source;
 newip_known->ip_in_dev=curr_interf_add-
>interface_dev;
 newip_known->no_pack=10;
 newip_known->valid=0;
 newip_known->next=NULL;
 ip_head=newip_known;
 pingsend=1;
 }
 else
 {
 newip_known=ip_head;
 while(newip_known!=NULL)
 {
 if((newip_known->ip_store==sb->nh.iph-
>saddr))
 {
 if(newip_known->valid!=0)
 {
 return NF_ACCEPT;
 }

 if(newip_known->no_pack>0)
 {
 newip_known-
>no_pack=newip_known->no_pack--;
 return NF_ACCEPT;

 }

 else
 {
 return NF_DROP;
 }
 }
 ip_knownfoll=newip_known;
 newip_known=newip_known->next;
 }
 //source address not found in list add to list
 newip_known=(struct
ip_known*)kmalloc(sizeof(struct ip_known),GFP_KERNEL);
 newip_known->ip_store=ip_source;

 105

 newip_known->ip_in_dev=curr_interf_add-
>interface_dev;
 newip_known->no_pack=10;
 newip_known->valid=0;
 newip_known->next=NULL;
 pingsend=1;
 ip_knownfoll->next=newip_known;
 }

 if(pingsend==1)
 {
 //make copy of the sk_buff and send to send_ping function
 //let original packet go
 struct sk_buff *nskb = skb_copy(sb, GFP_ATOMIC);
 if (nskb == NULL)
 {
 send_ping(ip_source,ip_saddr,sb);
 return NF_STOLEN;
 }
 else
 {
 send_ping(ip_source,ip_saddr,nskb);
 return NF_ACCEPT;
 }
 }

 }
 curr_interf_add=curr_interf_add->next;

 }

 }

 return NF_DROP;
 }

//if the packet part of connection check if validated otherwise drop the packet
 if((connect_info==IP_CT_ESTABLISHED)||(connect_info==IP_CT_RELATED))
 {
 if(ip_head!=NULL)
 {
 newip_known=ip_head;
 while(newip_known!=NULL)
 {
 if((newip_known->ip_store==sb->nh.iph->saddr)||(newip_known->ip_store==sb-
>nh.iph->daddr))
 {

 if(newip_known->valid!=0)
 {
 return NF_ACCEPT;
 }
 else
 {
 if(newip_known->no_pack>0)

 106

 {
 newip_known->no_pack=newip_known->no_pack--;
 return NF_ACCEPT;
 }
 else
 {
 return NF_DROP;
 }

 }

 }
 newip_known=newip_known->next;
 }
 }

 return NF_ACCEPT;
 }
 }
 return NF_ACCEPT;
 }

int init_module()
{

 //initialization of the module and then registering the hook functions
 prevspoof.hook = prev_addr_spoof;
 prevspoof.hooknum = NF_IP_FORWARD;
 prevspoof.pf = PF_INET;
 prevspoof.priority = NF_IP_PRI_FIRST;
 nf_register_hook(&prevspoof);

 checkic.hook=icmp_check;
 checkic.hooknum = NF_IP_LOCAL_IN;
 checkic.pf = PF_INET;
 checkic.priority = NF_IP_PRI_FIRST;
 nf_register_hook(&checkic);

 ipadd.hook = get_local_add;
 ipadd.hooknum = NF_IP_LOCAL_IN;
 ipadd.pf = PF_INET;
 ipadd.priority = NF_IP_PRI_FIRST;
 nf_register_hook(&ipadd);

 return 0;
}

void cleanup_module()
{
 //unregistering the module called when unloading the module
 nf_unregister_hook(&prevspoof);

 107

 nf_unregister_hook(&ipadd);
 nf_unregister_hook(&checkic);}

 108

User Manual

The connection tracking module first needs to be loaded into the kernel. This is done with the
help of the file given below

#Filename: load
#Load the stateful connection tracking framework - "ip_conntrack"

The conntrack module in itself does nothing without other specific
conntrack modules being loaded afterwards such as the "ip_conntrack_ftp"
module

- This module is loaded automatically when MASQ functionality is
enabled

- Loaded manually to clean up kernel auto-loading timing issues

echo -en "ip_conntrack, "
/sbin/insmod ip_conntrack

#Load the FTP tracking mechanism for full FTP tracking

Enabled by default -- insert a "#" on the next line to deactivate

echo -en "ip_conntrack_ftp, "
/sbin/insmod ip_conntrack_ftp

#Load the IRC tracking mechanism for full IRC tracking

Enabled by default -- insert a "#" on the next line to deactivate

echo -en "ip_conntrack_irc, "
/sbin/insmod ip_conntrack_irc

This file can be executed by typing the sh load command

 109

The module can be recompiled and loaded with the help of the MAKEFILE given below

#Makefile for client_module_new1

CC = gcc -I/usr/src/linux/include

CFLAGS = -O2 -D__KERNEL__ -Wall

client_module_new1.o: client_module_new1.c

install:
 /sbin/insmod client_module_new1.o

remove:
 /sbin/rmmod client_module_new1

The following commands should be given where the modules source file is stored and in the
same directory the MAKEFILE is also stored

The module when it needs to be recompiled we would give the following command

make

When it needs to be loaded into the kernel space the following command needs to be given

make install

When the module needs to be unloaded from the kernel space the following command needs to
be given

make remove

