

“Once Only” Drop Capability in the

Linux Routing Software

Submitted to the

Department of Computer Science

College of Computing Sciences

New Jersey Institute of Technology

in Partial Fulfillment of

the Requirements for the Degree of

Master of Science

By

Viraj Ajgaonkar

1

APPROVALS

Proposal

Number:-_________________________________

Approved by:

(Dr. Teunis J. Ott)

Date Submitted:

__________________________________-

2

Abstract

 This Project adds a capability to the existing

Linux Routing Software. The new capability is to

give a number n and a specific pattern to the

software and make the software drop the packet if

the packet contains the pattern and is within the

first n packets of the flow having the pattern. Here

n is known as limit of the flow. Subsequent packets

of that flow containing the same pattern need not be

dropped.

e.g.:- Let the pattern be “yikes” and the limit be

set to 3. Then for each TCP/IP flow the first 3

packets containing “yikes” are dropped. The

subsequent packets containing “yikes” are not

dropped.

For testing and verification this project also makes

use of some network sniffer softwares like Tcpdump

and Ethereal.

3

Contents

i Title Page
ii Acceptance/Approval Page
iii Abstract
iv Table of Contents

1. Introduction……………………………………………………………………….5

1.1 Problem Definition……………………………………………………………….5

1.2 Previous Work………………………………………………………………………………7

1.3 Glossary……………………………………………………………………………………………7

2 Design……………………………………………………………………………………………9

2.1 Approach…………………………………………………………………………………………….9

2.2 Deciding Factor……………………………………………………………………….12

2.3 Netfilter Hooks……………………………………………………………………….14

2.4 Packet Handling in Linux Kernel 2.4……………………17

2.5 Decision of the Hook……………………………………………………………23

2.6 Algorithm of my project……………………………………………………26

3 Implementation………………………………………………………………….28

3.1 Code…………………………………………………………………………………………………….28

3.1.1 Header File for data structure……………………………….28

3.1.2 Initialization and Cleanup………………………………………….30

3.1.3 Makefile………………………………………………………………………………………….31

3.1.4 Main Module………………………………………………………………………………….32

3.2 Explanation of the Code……………………………………………………39

3.2.1 Flow of the Program………………………………………………………………39

3.2.2 Function Description……………………………………………………………42

3.2.3 Useful Calculations………………………………………………………………45

4 Tests and Results………………………………………………………….47

5 Applications……………………………………………………………………….62

6 Future Enhancements…………………………………………………….65

7 Bibliography……………………………………………………………………….66

4

1. Introduction

1.1 Problem Definition

My project aims at building customizable Linux

Routing software. Linux is open source i.e. it

allows user to modify the operating system according

to their requirement. My project uses this feature

to access some ‘Network’ variables in the Linux

Routing software of the kernel in our Router. Also

we have added some user defined functions which will

process the routing mechanism in a desired way and

we have studied the effects of these modifications

on the flow of data between different systems that

passes through this router.

The project customizes the existing Linux

kernel routing software to give the user the ability

to drop a particular packet based on the contents of

that packet and also gives the user complete control

on the number of packet of any flow having that

content to be dropped.

5

Considering the above figure, Source and

Destination are two hosts separated by either one or

more networks. The Router is a host on one of the

networks between Source and Destination also Router

forwards the packets from the Source to Destination

and vice-versa. My software which is loaded at the

Router adds a new capability to it. This capability

is to drop the first n packets of the flow from

Source to Destination which contains a particular

string in the TCP Data.

e.g.:- Considering the flow from Source to

Destination. If the packet of this flow does not

have the string “yikes” then the packet is forwarded

to Destination. The first 10 packets of this flow

having the string “yikes” in the data part are

dropped and all subsequent packets of the flow

containing “yikes” are let through. Thus we can do

Source

Internet
Internet

Router Destination

6

packet filtering on the basis of the content and

also control the number of filtered packets.

1.2 Previous Work

This project study is based on the information

provided by the Linux 2.4.xx kernel code,

documentation files and different RFCs. The previous

work in the field of customizable Linux Routing

software targeted routers that were capable of

dropping all packets from a set of source hosts or

going to a set of destination hosts or passing

through a particular interface. However not much

work has been done for routers that drop packets

based on their data contents and also routers where

users can control the numbers of packets to be

dropped. This project gives the user ability to drop

packets in a router based on the data content and to

decide the number of packets to be dropped.

1.3 Glossary

IP: Internet Protocol

TCP: Transmission Control Protocol

UDP: User Datagram Protocol

7

Host: A computer which may be working as a

standalone machine or may be connected to some

network.

Router: A host which has at least two active network

interfaces and has the capability of forwarding IP

datagrams.

Source: A host which initiates the TCP/IP

connection.

Destination: A host that participates in the TCP/IP

connection initiated by the Source.

Internet: The vast collection of interconnected

networks that all use the TCP/IP protocols and that

evolved from the ARPANET of the late 60’s.

DNS: Domain Name Server

GOME: GNU Network Object Module Environment

LILO: LInux LOader

MTU: Maximum Transfer Unit

NIST Net: National Institute of Standards and

Technology (NIST) Network emulation tool

RTT: Round Trip Time

8

2. Design

2.1 Approach

There are 2 possible approaches for implementation

 Kernel recompilation.

 Modules using Netfilter hooks.

Detail Description of the methods

 Kernel recompilation: In the kernel recompiling

method we have to go through the Linux networking

code located in the dir xxxxxxxx and find the exact

function where we have to insert our code. Then we

have to make the appropriate changes to that

function to implement the required functionality. A

good practice of doing this is to comment the

original function and replace it with the new

function having the same definition. Finally we have

to recompile the modified Linux Kernel. Recompiling

creates a new Kernel image incorporating the changes

we made. Kernel recompilation keeps all the previous

Kernel images unaltered. Then in order to see the

effect of the changes we have to reboot and boot up

using the newly created Kernel image.

 Modules using Netfilter hooks: The approach of

Modules using Netfilter hooks has been explained in

9

detail in chapter 2.3 which follows. In this

approach initially we see the locations of all the

available Netfilter hooks and decide as to which

hook is the best possible location for inserting our

functionality. Then we design and implement the

functionality and save it in the form of a handler

function which is coded in C. e.g. the handler

function can be saved as router.c. Then we create a

module in which we register the handler function and

in this module we also bind the module to one of the

available Netfilter hooks. E.g. we can save the

module as viraj.c. Lastly we write a make file

(makefile) that compiles the module (viraj.c). Now

we compile the module by executing “make”. The

compilation gives us a executable file (viraj.o).

Now inorder to load the module and see the effects

we need to install the module using the command

“insmod viraj.o”. Finally to stop the module and

also its effect we have to uninstall the module

which is done using the command “rmmod viraj”. The

effects of the module are automatically written in

the log which is located in the file

/var/logs/messages. The process of installing and

uninstalling the module can be compared logically to

10

mounting and unmounting of an external drive. e.g.:-

Firstly we mount the floppy drive using “mount

/mnt/floppy”. Then when we have done the required

operation of the floppy drive and finally we unmount

the floppy drive using “umount /mnt/floppy”.

Similarly we install the module using “insmod

viraj.o”. The module binds itself to the proper hook

and whenever the execution point reaches the hook,

this module is executed and this module inturn calls

the handler function (router.c). The handler

function returns one of the standard return types

and ends its execution. Finally when we want to stop

the effect of the module we simply uninstall the

module using “rmmod viraj”. For any subsequent

executions of the kernel when the execution point

reaches the hook it doesn’t find any module

installed hence the execution will pass to the next

line of the Linux kernel code and the handler module

is not called.

11

2.2 Deciding Factor

 My project involves making changes to Linux

routing software and studying the effects of these

changes.

 In recompilation approach for every change we

have to recompile the entire kernel which takes a

long time (approx 45 mins) also frequent recompiles

makes the kernel fragile.

 In Netfilter hook option, we can see effects of

the changes we made in a short time (2 secs) by just

recompiling the module as compared to the lengthy

recompilation of the entire kernel.

 By using Netfilter hooks the module written is

portable as we can implement the same functionality

on any Linux router by simply copying and loading

the module. Whereas in kernel recompiling approach

the benefit of the code is available only on the

recompiled kernel.

 Once the changes have been made to the kernel

the effect is seen for the entire uptime of the new

kernel. Using modules fitting in Netfilter hooks we

see the effect of the module by installing the

module and stop the effect by simply uninstalling

12

the module. There by we have complete control over

the module. This is very useful as we can get

results only for the required time making it easy to

analyze data and infer important results.

13

2.3 Netfilter Hooks

Netfilter is a subsystem in the Linux 2.4

kernel. Netfilter makes network functionalities

such as packet filtering, network address

translation (NAT) and connection tracking possible

through the use of various hooks in the kernel's

network code. These hooks are places that kernel

code, either statically built or in the form of

a loadable module, can register functions to be

called for specific network events. An example of

such an event is the reception of a packet.

Netfilter defines five hooks for IPv4. The

declaration of the symbols for these can be found in

linux/netfilter_ipv4.h. These hooks are displayed in

the table below:

Table: Available IPv4 hooks

 Hook Called

• NF_IP_PRE_ROUTING After sanity checks, before

 routing decisions.

• NF_IP_LOCAL_IN After routing decisions if

 packet is for this host.

• NF_IP_FORWARD If the packet is destined

 for another interface.

14

• NF_IP_LOCAL_OUT For packets coming from

 local processes on their

 way out.

• NF_IP_POST_ROUTING Just before outbound

 packets "hit the wire".

15

After hook functions have done whatever

processing they need to do with a packet they must

return one of the predefined Netfilter return codes.

These codes are:

Table 2: Netfilter return codes

Return Code Meaning

• NF_DROP Discard the packet.

• NF_ACCEPT Keep the packet.

• NF_STOLEN Forget about the packet.

• NF_QUEUE Queue packet for user space.

• NF_REPEAT Call this hook function again.

16

2.4 Packet Handling in Linux Kernel 2.4

This chapter describes the packet handling

mechanism of the default Linux Kernel 2.4. This

figure below shows the Packet Handling in the

default Linux Kernel 2.4.

17

When the packet reaches the host from the

network, it goes through the network layer functions

and reaches net_rx_action() which is the last

function in device layer. From net_rx_action() the

packet is passed to ip_rcv() which is the first

function in IP layer. ip_rcv() verifies the skb, IP

Header and IP checksum. Subsequently the packet is

passed to the first Netfilter hook i.e.

NF_IP_PRE_ROUTING hook. If there is a module

installed at this hook the execution control is

taken over by the handler function of the module,

which does packet processing and returns one of the

predefined Netfilter return codes (explained in

chapter 2.3) and passes out of the Netfilter hook.

If there is no module attached to the hook then the

execution passes through the hook without doing any

processing. After passing the first Netfilter hook

the packet reaches ip_rcv_finish(), which verifies

whether the packet is for local delivery.

If it is addressed to this host, the packet is

given to ip_local_delivery(), which defragments the

fragmented packet. Subsequently the packet is passed

to the second Netfilter hook i.e. NF_IP_LOCAL_IN

hook. If there is a module installed at this hook

18

the execution control is taken over by the handler

function of the module else the execution passes

through the hook without doing any processing. After

passing the second Netfilter hook the packet reaches

ip_local_deliver_finish() which sends

icmp_dest_unreach or finds the protocol handler and

gives it to the appropriate transport layer function

(e.g. TCP or UDP). A packet can also reach the IP

layer coming from the upper layers (e.g. delivered

by TCP, or UDP, or coming directly to the IP layer

from some applications). The first function to

process the packet is then ip_queue_xmit(), which

creates and builds ip packet and computes the output

route. Subsequently the packet is passed to the

fourth Netfilter hook i.e. NF_IP_LOCAL_OUT hook. If

there is a module installed at this hook the

execution control is taken over by the handler

function of the module else the execution passes

through the hook without doing any processing. After

passing the fourth Netfilter hook the packet reaches

ip_queue_xmit2(), which passes it to ip_output() to

be passed to ip_finish_output(). In the output part,

the last changes to the packet are made in

ip_finish_output(). Subsequently the packet is

19

passed to the fifth Netfilter hook i.e.

NF_IP_POST_ROUTING hook. If there is a module

installed at this hook the execution control is

taken over by the handler function of the module

else the execution passes through the hook without

doing any processing. After passing the fifth

Netfilter hook the packet reaches

ip_finish_output2(). Final ip layer changes are made

to the packet in the function ip_finish_output2()

and the function dev_queue_transmit() is called; the

latter enqueues the packet in the output queue. It

also tries to run the network scheduler mechanism by

calling qdisc_run().

If an incoming packet has a destination IP

address other than that of the host, the latter acts

as a router (a frequent scenario in small networks).

If the host is configured to execute forwarding

(this can be seen and set via

/proc/sys/net/ipv4/ip_forward), it then has to be

processed by a set of complex but very efficient

functions. If the ip_forward variable is set to

zero, it is not forwarded. The route is calculated

by calling ip_route_input(), which (if a fast hash

does not exist) calls ip_route_input_slow(). The

20

ip_route_input_slow() function calls the FIB

(Forward Information Base) set of functions in the

fib*.c files. The FIB structure is quite complex. If

the packet is a multicast packet, the function that

calculates the set of devices to transmit the packet

to is ip_route_input_mc(). In this case, the IP

destination is unchanged. After the route is

calculated, ip_rcv_finished() inserts the new IP

destination in the IP packet and the output device

in the sk_buff structure. The packet is then passed

to the forwarding function ip_forward() which

handles the route alert, verifies TTL, verifies

Strict Routing, sends Redirect if necessary,

decreases TTL and verifies that fragmentation is

possible based on mtu. Subsequently the packet is

passed to the third Netfilter hook i.e.

NF_IP_FORWARD hook. If there is a module installed

at this hook the execution control is taken over by

the handler function of the module else the

execution passes through the hook without doing any

processing. After passing the third Netfilter hook

the packet reaches ip_forward_finish() which handles

IP options, fragments the packet if necessary and

21

sends it to the output components i.e.

ip_finish_output().

22

2.5 Decision of the Hook

Objective of the project is to customize the

firewall software for a router, so that the router

can filter packets based on TCP data and can also

control the number of packets of each flow to be

filtered. There are three types of TCP/IP flows that

can pass through a router. They are as shown in the

figure below:

Router

Flow A Flow C

Flow B

Flow A TCP/IP flows where the Destination is the

Router itself.

Flow B TCP/IP flows where the Router is neither

the source nor the destination.

Flow C TCP/IP flows where the Source is the Router

itself.

The flows that are of importance to us are of

type Flow B. Now if we install our software at

NF_IP_LOCAL_IN, we are able to catch all the packets

23

of Flow A but we miss the packets of Flow B, hence

NF_IP_LOCAL_IN is not considered for installing our

module. Similarly if we install our software at

NF_IP_LOCAL_OUT, we are able to catch all the

packets of Flow C but we miss the packets of Flow B,

hence NF_IP_LOCAL_OUT is not considered for

installing our module. If we install our module at

either NF_IP_PRE_ROUTING or NF_IP_POST_ROUTING or

NF_IP_FORWARD, we are successfully able to catch all

the packets of flow B which is required. To

shortlist among these three hooks we consider the

fact that if we install our software at

NF_IP_POST_ROUTING or NF_IP_FORWARD hook we always

do complex calculation of the route for the packet

before we decide whether the packet needs to be

dropped or not. Hence there are some cases where the

route is calculated but not used as the packet is

dropped. The advantage of using NF_IP_PRE_ROUTING

hook is that we take decision regarding dropping of

the packet in advance; hence we calculate the route

for only the relevant packets. Thus using

NF_IP_PRE_ROUTING hook saves us a lot of overhead.

Second incentive to choose NF_IP_PRE_ROUTING hook is

that, at this hook we receive the entire sk_buff so

24

the memory allocation is simple (contiguous) and we

do not have to worry about fragmentation of sk_buff.

In the other hooks the sk_buff we receive has not

been fully realized hence we have complexity to

account for sk_buff fragmentation due to

noncontiguous memory allocation.

25

2.6 Algorithm of my project

In the router we check all the incoming packets

and by reading the contents get information about

the source ip, destination ip, source port and

destination port if it is a TCP/IP packet. Using

this information we determine as to which flow this

packet belongs to. For the first packet of each flow

that the router encounters, a new node (data

structure i.e. sock_details) is created and is

appended to an existing link list (pointed to by

head_list). This link list is a collection of

information of all the flows, i.e. it is a linked

list of sock_details, such that head_list points to

the details of the first active flow. Then we check

if this flow already exists if it does then no new

node is created.

 By doing pointer arithmetic we can read the TCP

data and also simultaneously search the string. If

the string is found then the found flag is set to 1

and also the count is incremented by 1. Subsequently

we extract other information which is required to

maintain the flows, like status of finish flag in

the packet. Then we check if

(count > limit). If (count > limit) and if found is

26

set to 1 then the drop flag is set to 1 else drop

flag is set to 0. Finally if the drop flag is 1 the

packet is dropped using NF_DROP return type else the

packet is let through using NF_ACCEPT return type.

27

3. Implementation

3.1 Code

3.1.1 Header File for data structure

#include </usr/src/linux-2.4/include/asm-i386/types.h>

struct sock_details

{

int num_packs_mytype; //count of number of packets of

//the flow encountered by the

router

int count; //count of times the pattern is found for the

flow

int limit; //number of packets having the pattern to be

dropped

int finish;//indicates if the FIN flag has been

encountered for //the flow

 char *reg_exp;//defines the pattern or search string

__u16 sport,dport;//indicates the ports of source and

//destination computers of the flow

__u32 saddr,daddr;//indicates the ip address of source

and //destination computers of the

flow

 struct sock_details *next;

 struct sock_details *prev;

};

struct head_list

28

{

int tot_num_packs;// number of packets encountered by the

router

int num_of_socks;//count of the total number of flows

active at //any point

struct sock_details *first_socket;//pointer to the

details of the //first

active flow

};

29

3.1.2 Initialization and Cleanup

/* Initialization routine */

int init_module()

{

 /* Fill in our hook structure */

 nfho.hook = hook_func; /* Handler function

*/

 nfho.hooknum = NF_IP_PRE_ROUTING; /* First for

IPv4 */

 nfho.pf = PF_INET;

 nfho.priority = NF_IP_PRI_FIRST; // Make our

func first

 nf_register_hook(&nfho); //registering the hook

return 0;

}

/* Cleanup routine */

void cleanup_module()

{

 nf_unregister_hook(&nfho); //unregistering the

hook

}

30

3.1.3 Makefile

#Makefile

CC= gcc -I/usr/src/linux-2.4/include

CFLAGS = -O2 -D__KERNEL__ -Wall

hook1.o:hook1.c

31

3.1.4 Main Module

#define MODULE
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/ip.h> /* For IP first_socketer */
#include <linux/netfilter.h>
#include <linux/netfilter_ipv4.h>
#include <linux/state_table.h> /*/usr/src/linux-2.4.20-
18.9/include/linux*/

int i;//my variable for the for loop
static struct sock_details *current_packet;//used for deletion
of a node
static struct sock_details *current_prev;//used for deletion
of a node
static struct sock_details *current_next;//used for traversing
the linked list of flows
static struct sock_details *printer;//used for traversing the
linked list of flows during printing
static struct head_list head = {0, 0, NULL};
__u16 packet_sport,packet_dport;
__u32 packet_saddr,packet_daddr;
__u8 TCP_HLEN,FIN_FLAG,PROTOCOL;
static char *tcp_data_ptr;
static char *temp_ptr;
char c;
static char *drop_if = "rainfall";
static char *check_if;
static int found,length,drop;

/* This is the structure we shall use to register our function
*/
static struct nf_hook_ops nfho;

/* This is the hook function itself */
unsigned int hook_func(unsigned int hooknum,
 struct sk_buff **skb,
 const struct net_device *in,
 const struct net_device *out,
 int (*okfn)(struct sk_buff *))
{

struct sk_buff *sb = *skb;
head.tot_num_packs++;
drop =0;

void process_drop()
{
current_packet = head.first_socket;
for(i=0; i<head.num_of_socks;i++)
{

32

if(current_packet->saddr == packet_saddr && current_packet-
>sport == packet_sport && current_packet->daddr ==
packet_daddr && current_packet->dport == packet_dport)
{//if the flow is found among existing flows in the list
if(current_packet->count > current_packet->limit)
 drop =0;
else
 drop =1;
break;
}
else
{
if(current_packet->next == NULL)
 {//we reached the end of the list of flows and still no
match found
 drop =0;
 }
else
 {
 current_packet = current_packet->next;
 }
}

}
}
void create_check_if()
{
temp_ptr = (char *) (tcp_data_ptr);
check_if= strncpy (check_if,temp_ptr,length);
//for(i=0;i<length;i++)
//{
// printk("%c", *(char *)(tcp_data_ptr + i));
//}
//printk("\n");
}

void process_found()
{
found =0;
tcp_data_ptr = ((sb->data + (sb->nh.iph->ihl * 4))+(TCP_HLEN
*4));
printk("The TCP Data is \n");

while(tcp_data_ptr != ((char *)(sb->tail)))
{
printk("%c", *(char *)(tcp_data_ptr));
tcp_data_ptr++;
}
printk("\n");

length = strlen(drop_if);
check_if = (char *)kmalloc(sizeof(char),GFP_KERNEL);
while((((char *)(sb->tail)) - tcp_data_ptr) > length)
{
kfree(check_if);
check_if = (char *)kmalloc(sizeof(char),GFP_KERNEL);
create_check_if();

33

if(strncmp(drop_if,check_if,length) == 0)
{
found =1;

break;
}
else
{
found = 0;
}
tcp_data_ptr++;
}

if(found == 1)
printk("The string is found \n");
else
printk("The string is NOT found \n");

}

void print_list()
{
printer = head.first_socket;//initialising the cursor to first
node
if(head.num_of_socks != 0)//checking to see an empty list
{
for(i=0;i<head.num_of_socks;i++)//traversing the entire list
{
printk("--
---------\n");
printk("For flow %d number of packet = %d \n", i+1, printer-
>num_packs_mytype);
printk("S_Addr = %x D_Addr = %x S_port = %x Dport =
%x\n" , printer->saddr,printer->daddr,printer->sport,printer-
>dport);
printk("Count %d Limit %d Finish %d REGULAR EXPRESSION : %s
\n", printer->count, printer->limit, printer->finish, printer-
>reg_exp);
printk("--
---------\n");
printer = printer->next;
}
}
}

void insert()
{
struct sock_details *temp;//creating a temp node to be
attached to link list
if(head.first_socket == NULL)//checking to see if the list is
empty
{
temp = (struct sock_details *)kmalloc(sizeof(struct
sock_details),GFP_KERNEL);
head.first_socket = temp;
temp->num_packs_mytype = 1;

34

temp->saddr = packet_saddr;
temp->daddr = packet_daddr;
temp->sport = packet_sport;
temp->dport = packet_dport;
if(found == 1)
{
temp->count = 1;
}

else
temp->count = 0;
temp->limit = 10;
temp->finish = 0;
temp->reg_exp = "viraj";
temp->prev = NULL;
temp->next = NULL;
}
else
{
temp = (struct sock_details *)kmalloc(sizeof(struct
sock_details),GFP_KERNEL);
temp->num_packs_mytype = 1;
temp->saddr = packet_saddr;
temp->daddr = packet_daddr;
temp->sport = packet_sport;
temp->dport = packet_dport;
if(found == 1)
{
temp->count = 1;
}
else
temp->count = 0;
temp->limit = 10;
temp->finish = 0;
temp->reg_exp = "viraj";
current_packet->next = temp;
temp->prev = current_packet;
temp->next = NULL;
}
print_list();//printing the current linked list of TCP/IP
flows
}

void finish()
{
current_packet = head.first_socket;
for(i=0; i<head.num_of_socks;i++)
{
if(current_packet->saddr == packet_saddr && current_packet-
>sport == packet_sport && current_packet->daddr ==
packet_daddr && current_packet->dport == packet_dport)
{//if the flow is found among existing flows in the list
current_packet->finish = 1;
current_packet->num_packs_mytype++;
if(found == 1)
current_packet->count++;
break;

35

}
else
{
if(current_packet->next == NULL)
{//we reached the end of the list of flows and still no match
found
head.num_of_socks++;
insert();
current_packet = current_packet->next;
current_packet->finish = 1;
}
else
{
current_packet = current_packet->next;
}
}

}
}

void process()
{
current_packet = head.first_socket;
if(head.num_of_socks == 0)
{ //if the linked list is empty i.e. there are no previous
flows
head.num_of_socks++;
insert();
}
else
{
for(i=0;i<head.num_of_socks;i++)//traversing the non empty
linked list
{
if(current_packet->saddr == packet_saddr && current_packet-
>sport == packet_sport && current_packet->daddr ==
packet_daddr && current_packet->dport == packet_dport)
{ //if the flow is found
if(current_packet->finish == 1)//if this is the packet after
Fin packet
{
//delete entry actually

if ((current_packet->prev == NULL) & (current_packet->next ==
NULL))
{ //if there is only one node in the linked list
head.first_socket = NULL;
head.num_of_socks = 0;
}
else
{
if(current_packet->prev == NULL)
{ //if the first node is to be deleted from the list
current_next = current_packet->next;
head.first_socket = current_next;
current_next->prev = NULL;
current_packet = current_next;

36

head.num_of_socks--;
}
else
{
if(current_packet->next == NULL)
{ //if the last packet is to be deleted from the list
current_prev = current_packet->prev;
current_prev->next = NULL;
current_packet = current_prev;
head.num_of_socks--;
}
else
{ //if the node to be deleted from the linked list is
between 2 nodes
current_prev = current_packet->prev;
current_next = current_packet->next;
current_prev->next = current_next;
current_next->prev = current_prev;
current_packet = current_prev;
head.num_of_socks--;
}
}
}

print_list();
}
else
{
current_packet->num_packs_mytype++;
if(found == 1)
current_packet->count++;
printk("Number of packets of this flow = %d \n" ,
current_packet->num_packs_mytype);
print_list();
}
break;
}
else
{//if the flow isn't found in the linked list of existing
flows
if(current_packet->next == NULL)
{ //if we reach the end and still no match is found
//in existing flows we create new entry for this flow
head.num_of_socks++;
insert();
}
else
 current_packet = current_packet->next;

}
}
}
}

37

packet_saddr = sb->nh.iph->saddr;//getting Source Adddr of
packet
packet_daddr = sb->nh.iph->daddr;//getting Destn Adddr of
packet
packet_sport = *(unsigned int *) (sb->data + (sb->nh.iph->ihl
* 4));//getting Source Port of packet
packet_dport = *(unsigned int *) ((sb->data + (sb->nh.iph->ihl
* 4)) + 2);//getting Destn Port of packet

if(packet_saddr != packet_daddr)
{
printk("S_ADDR %x ", packet_saddr);
printk("D_ADDR %x ", packet_daddr);
printk("S_PORT %x ", packet_sport);
printk("D_PORT %x ", packet_dport);
TCP_HLEN = *((sb->data + (sb->nh.iph->ihl * 4)) +
12);//getting TCP Header Length
TCP_HLEN = TCP_HLEN / 16;
printk("Correct TCP_HLEN %d ", TCP_HLEN);//printing TCP
Header Length
FIN_FLAG = *((sb->data + (sb->nh.iph->ihl * 4)) + 13);
//getting the TCP Flags
FIN_FLAG = FIN_FLAG % 16;
FIN_FLAG = FIN_FLAG % 2;
PROTOCOL = (sb->nh.iph->protocol);//getting the Transport
Layer Protocol
printk("Protocol is %d \n ", PROTOCOL);//printing the
Transport Layer Protocol
if(PROTOCOL == 6)//checking to see if it is a TCP/IP Packet
{
process_found();
if(FIN_FLAG == 1)
{
printk("I am dying\n\n");
finish();
}
else
process();
if (found == 1)
process_drop();
}
if(drop == 1)
{
print_list();
printk("This packet is dropped\n");
return NF_DROP;
}
else
return NF_ACCEPT;
}
else
{
return NF_ACCEPT;
}

}

38

3.2 Explanation of the Code

3.2.1 Flow of the Program

Functions and Program Flow

 check if it is TCP/IP packet.

 get packet info and flow info.

 process_found() -> create_if()

 process()

 finish()

 insert()

 process_drop()

The various functions in the module and the

flow of execution in the program are as follows.

For each incoming packet we first check if it

is a TCP/IP packet, this is done by checking if

(sb->nh.iph->protocol) == 6. If the packet is a

TCP/IP packet, then we get information about the

packet as well as other data that gives us

information about the flow to which the packet

belongs. This information consists of the source IP

Address, Destination IP Address, Source Port,

Destination Port, TCP Header Length and the status

of Fin Flag in the packet.

39

Then the function process_found() is called. In

this process we traverse the entire TCP data until

we reach the end of TCP data marked by (sb->tail).

During the traversal if the search string is found,

then we set the ‘found’ flag to 1 and break from

the loop to avoid further traversal of TCP Data. If

even at the end of TCP Data the pattern is not found

then we do not change the value of ‘found’ flag

which by default is set to 0. By looking at the

found flag at any future point of packet processing

we can tell if it contains the search string or not.

After process_found() has done it’s processing

we call the function finish() else we call the

function process(). In the functions finish() and

process() we do certain processing required for

maintaining the status of the flows, also if the

‘found’ flag is set to 1 we increment the value of

count for the flow in the node by one else if

‘found’ flag is set to 0 we do not make any change

to count. If during processing of functions finish()

and process() we find that the packet is the first

packet of the flow, we create a new node for the

flow by calling the function insert().

40

In the function insert() we create a new node

of the type sock_detail and enter important

information like source IP Address, Destination IP

Address, Source Port, Destination Port. Also we set

the proper values of limit, count, finish. Then we

insert the node at the end of the linked list.

Then if ‘found’ == 1 we call the function

process_drop(). In process_drop(), we check if the

count for this flow has exceeded the limit of the

flow, this is done by checking if (count > limit).

If (count > limit), then ‘drop’ flag is set to 0

else ‘drop’ flag is set to 1. Finally if ‘drop’ flag

is set to 1 the packet is dropped using NF_DROP

return type, else if ‘drop’ flag is set to 0 the

packet is let through using NF_ACCEPT return type.

41

3.2.2 Function Description

process_found(): This function traverses the

entire TCP Data and simultaneously checks if the

search string is found. If the search string is

found the traversing of TCP Data is stopped and

the ‘found’ flag is set to 1, before the function

process_found() ends it’s processing. If the

search string is not found at the end of the

traversal then the function process_found() ends

it’s processing without changing the value of

‘found’ flag which by default is set to 0. In

this project a naïve pattern matching algorithm

has been used. This can be improved in future.

“ack” packet for the Fin packet, hence we delete

process(): This function checks if the flow which

the packet belongs to exists in the linked list,

if it doesn’t this function calls the function

insert() else it finds the relevant node and does

further processing. Further it checks if the

‘found’ flag is set to 1. If ‘found’ flag is set

to 1, the value of count is incremented by 1 else

the value of count is not changed. Subsequently

if the Fin flag has already been encountered for

this flow, it implies that this packet is the

42

the node from the link list and make the linked

list proper.

 function is called when the router insert(): This

encounters the first packet of any flow. In this

function we create a new node of the type

sock_details and insert the various values

representing the flow into this node. The various

values include source IP Address, Destination IP

Address, Source Port, Destination Port. Also we

set the proper values of limit, count, finish.

Then we insert the node at the end of the linked

list, which is pointed to by head_list.

 Fin flag finish(): This function is called if the

in the packet is set. In finish() function

firstly we traverse the entire linked list of

nodes until we get the node representing the flow

of the packet or we reach the end of the list. If

we find the flow in the linked list then we set

the finish flag of the flow to 1 indicating that

for this flow the Fin flag has been encountered.

If we reach the end of the list and still do not

find the node that indicates that it is the first

packet of the flow to be encountered by the

router, hence we create a new node using the

43

function insert() and append it to the existing

linked list. Finally we set the finish flag to 1

for this newly created node.

 is called only if process_drop(): This function

‘found’ flag is set to 1, i.e. if the search

string is found in the TCP Data. In this function

we check if we have check if the limit has been

reached for the flow that the current packet

belongs to. This is done by checking if

(count > limit). limit indicates the number of

packets containing the search string that need to

be dropped for each flow. Hence if (count >

limit), it indicates that for that flow, we have

already dropped the required number of packets

and any subsequent packets of that flow

containing the search string shouldn’t be

dropped. So if (count > limit) ‘drop’ flag is set

to 0 else drop ‘flag’ is set to 1 indicating that

this packet needs to be filtered i.e. dropped.

44

3.2.3 Useful Calculations

In this project I am working at the IP Layer

and I have to access the data of TCP layer. Due to

this layer mismatch, in order to prevent a layering

violation, the kernel does not let us use the direct

pointer to the TCP part using skb->h.th. In order to

access TCP part of the sk_buff, we have to use the

available pointer in IP layer and access the TCP

Part by doing Pointer Arithmetic.

The structure of IP and TCP Header is as

follows.

45

We can reach the start of the IP Header by

using the available pointer sb->data. Further we can

get the length of the IP header using the pointer

(sb->nh.iph->ihl). Now in order to reach the start

of TCP Header we have to take a pointer that points

to the start of IP header and move it forward by the

length of IP Header. To achieve this we use

v = (sb->data) + (sb->nh.iph->ihl);

where (sb->data)denotes the start of IP Header

and (sb->nh.iph->ihl)denotes the length of IP

Header.

 Further in order to access the TCP Data we have

to access a pointer that point to the start of TCP

Header (i.e. v) and increment this pointer by the

length of TCP Header. To achieve this we use

v1 = (v + (TCP_HLEN *4));

where v = (sb->data) + (sb->nh.iph->ihl); denotes

the start of TCP Header

and TCP_HLEN = ((*(v + 12)) / 16); denotes the

length of TCP Header because (v+12) points to the

TCP Header length and hence *(v + 12) denotes the

value of TCP Header length.

46

4. Tests and Results

The input for this test is in the form of an http

request which goes from the Source

(chekov.internet.lab, IP Address 10.4.0.2) to the

Destination (www.google.com, IP Address

64.233.167.104) via the Router (erwin.internet.lab,

IP Address 10.4.0.1). For this test we have used

“rainfall” as the search string and we have set the

limit to 3. The requests are TCP/IP packets. The

physical setup of the 3 hosts for this test is as

follows.

Source
chekov.internet

.lab
10.4.0.2

Destination
www.google.com
64.233.167.104

Ethereal Internet

Router
erwin.internet.lab

TCP
Dump

10.4.0.1

47

Screenshot of the Input is shown below

48

The output generated by the module is stored in

the log file. The output file generated by my module

is as follows.

Please Note that the lines with “====” are not

automatically generated by my module, they are

comments added by me later on for a cleaner

presentation in the Report/Documentation. Also the

entire log file has not been pasted here due to the

size constraints of the Report, I have shown only

the packets that are important from our point of

view and have excused the unimportant packets.

e.g.:- For flow 1 and flow 2 the “Syn” packet is not

shown and we jump directly to the first data packet

which happens to be packet number 6 for flow 1.

========== Data Packet from Source ===============

Dec 14 14:40:41 erwin kernel: S_ADDR 200040a D_ADDR 68a7e940

S_PORT d481 D_PORT 5000 Correct TCP_HLEN 5 The TCP Data is

Dec 14 14:40:41 erwin kernel: GET /sea

Dec 14 14:40:41 erwin kernel: ET /sear

Dec 14 14:40:41 erwin kernel: T /searc

Dec 14 14:40:41 erwin kernel: /search

Dec 14 14:40:41 erwin kernel: /search?

Dec 14 14:40:41 erwin kernel: search?h

Dec 14 14:40:41 erwin kernel: earch?hl

Dec 14 14:40:41 erwin kernel: arch?hl=

49

Dec 14 14:40:41 erwin kernel: rch?hl=e

Dec 14 14:40:41 erwin kernel: ch?hl=en

Dec 14 14:40:41 erwin kernel: h?hl=en&

Dec 14 14:40:41 erwin kernel: ?hl=en&q

Dec 14 14:40:41 erwin kernel: hl=en&q=

Dec 14 14:40:41 erwin kernel: l=en&q=r

Dec 14 14:40:41 erwin kernel: =en&q=ra

Dec 14 14:40:41 erwin kernel: en&q=rai

Dec 14 14:40:41 erwin kernel: n&q=rain

Dec 14 14:40:41 erwin kernel: &q=rainf

Dec 14 14:40:41 erwin kernel: q=rainfa

Dec 14 14:40:41 erwin kernel: =rainfal

Dec 14 14:40:41 erwin kernel: rainfall

Dec 14 14:40:41 erwin kernel: The string is found

Dec 14 14:40:41 erwin kernel: Number of packets of this flow = 6

Dec 14 14:40:41 erwin kernel: --------------------------------

Dec 14 14:40:41 erwin kernel: For flow 1 number of packet = 6

Dec 14 14:40:41 erwin kernel: S_Addr = 200040a D_Addr =

68a7e940 S_port = d481 Dport = 5000

Dec 14 14:40:41 erwin kernel: Count 1 Limit 3 Finish 0

Dec 14 14:40:41 erwin kernel: --------------------------------

Dec 14 14:40:41 erwin kernel: --------------------------------

Dec 14 14:40:41 erwin kernel: For flow 2 number of packet = 4

Dec 14 14:40:41 erwin kernel: S_Addr = 68a7e940 D_Addr =

200040a S_port = 5000 Dport = d481

Dec 14 14:40:41 erwin kernel: Count 0 Limit 3 Finish 0

Dec 14 14:40:41 erwin kernel: --------------------------------

Dec 14 14:40:41 erwin kernel: This packet is dropped

========== End of Data Packet from Source ========

50

=============== Retransmission No 1 of Data Packet =========

Dec 14 14:40:41 erwin kernel: S_ADDR 200040a D_ADDR 68a7e940

S_PORT d481 D_PORT 5000 Correct TCP_HLEN 5 The TCP Data is

Dec 14 14:40:41 erwin kernel: GET /sea

Dec 14 14:40:41 erwin kernel: ET /sear

.....................................

Dec 14 14:40:41 erwin kernel: =rainfal

Dec 14 14:40:41 erwin kernel: rainfall

Dec 14 14:40:41 erwin kernel: The string is found

Dec 14 14:40:41 erwin kernel: Number of packets of this flow = 7

Dec 14 14:40:41 erwin kernel: --------------------------------

Dec 14 14:40:41 erwin kernel: For flow 1 number of packet = 7

Dec 14 14:40:41 erwin kernel: S_Addr = 200040a D_Addr =

68a7e940 S_port = d481 Dport = 5000

Dec 14 14:40:41 erwin kernel: Count 2 Limit 3 Finish 0

Dec 14 14:40:41 erwin kernel: --------------------------------

Dec 14 14:40:41 erwin kernel: --------------------------------

Dec 14 14:40:41 erwin kernel: For flow 2 number of packet = 4

Dec 14 14:40:41 erwin kernel: S_Addr = 68a7e940 D_Addr =

200040a S_port = 5000 Dport = d481

Dec 14 14:40:41 erwin kernel: Count 0 Limit 3 Finish 0

Dec 14 14:40:41 erwin kernel: --------------------------------

Dec 14 14:40:42 erwin kernel: This packet is dropped

======== End of Retransmission No 1 of Data Packet ========

======== Retransmission No 2 of Data Packet ==========

Dec 14 14:40:42 erwin kernel: S_ADDR 200040a D_ADDR 68a7e940

S_PORT d481 D_PORT 5000 Correct TCP_HLEN 5 The TCP Data is

51

Dec 14 14:40:42 erwin kernel: GET /sea

Dec 14 14:40:42 erwin kernel: ET /sear

....................................

Dec 14 14:40:42 erwin kernel: =rainfal

Dec 14 14:40:42 erwin kernel: rainfall

Dec 14 14:40:42 erwin kernel: The string is found

Dec 14 14:40:42 erwin kernel: Number of packets of this flow = 8

Dec 14 14:40:42 erwin kernel: --------------------------------

Dec 14 14:40:42 erwin kernel: For flow 1 number of packet = 8

Dec 14 14:40:42 erwin kernel: S_Addr = 200040a D_Addr =

68a7e940 S_port = d481 Dport = 5000

Dec 14 14:40:42 erwin kernel: Count 3 Limit 3 Finish 0

Dec 14 14:40:42 erwin kernel: --------------------------------

Dec 14 14:40:42 erwin kernel: --------------------------------

Dec 14 14:40:42 erwin kernel: For flow 2 number of packet = 4

Dec 14 14:40:42 erwin kernel: S_Addr = 68a7e940 D_Addr =

200040a S_port = 5000 Dport = d481

Dec 14 14:40:42 erwin kernel: Count 0 Limit 3 Finish 0

Dec 14 14:40:42 erwin kernel: --------------------------------

Dec 14 14:40:42 erwin kernel: This packet is dropped

========== End of Retransmission No 2 of Data Packet =======

== Random data packet passing the router, not part of our

study =====

Dec 14 14:40:42 erwin kernel: S_ADDR fa00030a D_ADDR

1000040a S_PORT fe03 D_PORT 302 Correct TCP_HLEN 10 The

TCP Data is

Dec 14 14:40:42 erwin kernel: The string is NOT found

Dec 14 14:40:42 erwin kernel: --------------------------------

52

Dec 14 14:40:42 erwin kernel: For flow 1 number of packet = 8

Dec 14 14:40:42 erwin kernel: S_Addr = 200040a D_Addr =

68a7e940 S_port = d481 Dport = 5000

Dec 14 14:40:42 erwin kernel: Count 3 Limit 3 Finish 0

Dec 14 14:40:42 erwin kernel: --------------------------------

Dec 14 14:40:42 erwin kernel: --------------------------------

Dec 14 14:40:42 erwin kernel: For flow 2 number of packet = 4

Dec 14 14:40:42 erwin kernel: S_Addr = 68a7e940 D_Addr =

200040a S_port = 5000 Dport = d481

Dec 14 14:40:42 erwin kernel: Count 0 Limit 3 Finish 0

Dec 14 14:40:42 erwin kernel: --------------------------------

Dec 14 14:40:42 erwin kernel: --------------------------------

Dec 14 14:40:42 erwin kernel: For flow 3 number of packet = 1

Dec 14 14:40:42 erwin kernel: S_Addr = fa00030a D_Addr =

1000040a S_port = fe03 Dport = 302

Dec 14 14:40:42 erwin kernel: Count 0 Limit 3 Finish 0

Dec 14 14:40:42 erwin kernel: --------------------------------

==

======== Retransmission No 3 of Data Packet ===========

Dec 14 14:40:43 erwin kernel: S_ADDR 200040a D_ADDR 68a7e940

S_PORT d481 D_PORT 5000 Correct TCP_HLEN 5 The TCP Data is

Dec 14 14:40:43 erwin kernel: GET /sea

Dec 14 14:40:43 erwin kernel: ET /sear

.....................................

Dec 14 14:40:43 erwin kernel: =rainfal

Dec 14 14:40:43 erwin kernel: rainfall

Dec 14 14:40:43 erwin kernel: The string is found

Dec 14 14:40:43 erwin kernel: Number of packets of this flow = 9

53

Dec 14 14:40:43 erwin kernel: --------------------------------

Dec 14 14:40:43 erwin kernel: For flow 1 number of packet = 9

Dec 14 14:40:43 erwin kernel: S_Addr = 200040a D_Addr =

68a7e940 S_port = d481 Dport = 5000

Dec 14 14:40:43 erwin kernel: Count 4 Limit 3 Finish 0

Dec 14 14:40:43 erwin kernel: --------------------------------

Dec 14 14:40:43 erwin kernel: --------------------------------

Dec 14 14:40:43 erwin kernel: For flow 2 number of packet = 4

Dec 14 14:40:43 erwin kernel: S_Addr = 68a7e940 D_Addr =

200040a S_port = 5000 Dport = d481

Dec 14 14:40:43 erwin kernel: Count 0 Limit 3 Finish 0

Dec 14 14:40:43 erwin kernel: --------------------------------

Dec 14 14:40:43 erwin kernel: --------------------------------

Dec 14 14:40:43 erwin kernel: For flow 3 number of packet = 1

Dec 14 14:40:43 erwin kernel: S_Addr = fa00030a D_Addr =

1000040a S_port = fe03 Dport = 302

Dec 14 14:40:43 erwin kernel: Count 0 Limit 3 Finish 0

Dec 14 14:40:43 erwin kernel: --------------------------------

======== End of Retransmission No 3 of Data Packet ========

========= Response Packet from Destination for Data Packet

from Source ==========

Dec 14 14:40:43 erwin kernel: S_ADDR 68a7e940 D_ADDR 200040a

S_PORT 5000 D_PORT d481 Correct TCP_HLEN 5 The TCP Data is

Dec 14 14:40:43 erwin kernel: The string is NOT found

Dec 14 14:40:43 erwin kernel: Number of packets of this flow = 5

Dec 14 14:40:43 erwin kernel: --------------------------------

Dec 14 14:40:43 erwin kernel: For flow 1 number of packet = 9

54

Dec 14 14:40:43 erwin kernel: S_Addr = 200040a D_Addr =

68a7e940 S_port = d481 Dport = 5000

Dec 14 14:40:43 erwin kernel: Count 4 Limit 3 Finish 0

Dec 14 14:40:43 erwin kernel: --------------------------------

Dec 14 14:40:43 erwin kernel: --------------------------------

Dec 14 14:40:43 erwin kernel: For flow 2 number of packet = 5

Dec 14 14:40:43 erwin kernel: S_Addr = 68a7e940 D_Addr =

200040a S_port = 5000 Dport = d481

Dec 14 14:40:43 erwin kernel: Count 0 Limit 3 Finish 0

Dec 14 14:40:43 erwin kernel: --------------------------------

Dec 14 14:40:43 erwin kernel: --------------------------------

Dec 14 14:40:43 erwin kernel: For flow 3 number of packet = 1

Dec 14 14:40:43 erwin kernel: S_Addr = fa00030a D_Addr =

1000040a S_port = fe03 Dport = 302

Dec 14 14:40:43 erwin kernel: Count 0 Limit 3 Finish 0

Dec 14 14:40:43 erwin kernel: --------------------------------

==

55

Screen shot of verification by Ethereal

56

Verification of Tests using TCP Dump

14:38:56.455455 chekov.33236 > 64.233.167.104.http: P

2916188685:2916189297(612) ack 1117907919 win 9432 (DF)

14:38:56.663365 chekov.33236 > 64.233.167.104.http: P

0:612(612) ack 1 win 9432 (DF)

14:38:57.083355 chekov.33236 > 64.233.167.104.http: P

0:612(612) ack 1 win 9432 (DF)

14:38:57.262706 arp who-has 10.4.0.16 tell 10.4.0.1

14:38:57.923357 chekov.33236 > 64.233.167.104.http: P

0:612(612) ack 1 win 9432 (DF)

14:38:57.931212 64.233.167.104.http > chekov.33236: . ack 612

win 5840

14:38:57.991917 64.233.167.104.http > chekov.33236: P

1:194(193) ack 612 win 5840

14:38:57.991939 chekov.33236 > 64.233.167.104.http: . ack 194

win 9432 (DF)

14:38:57.997021 64.233.167.104.http > chekov.33236: .

194:1574(1380) ack 612 win 5840

14:38:57.997045 chekov.33236 > 64.233.167.104.http: . ack 1574

win 12420 (DF)

14:38:57.997023 64.233.167.104.http > chekov.33236: P

1574:1711(137) ack 612 win 5840

14:38:57.997052 chekov.33236 > 64.233.167.104.http: . ack 1711

win 12420 (DF)

14:38:58.216899 64.233.167.104.http > chekov.33236: .

1711:3091(1380) ack 612 win 5840

14:38:58.216922 chekov.33236 > 64.233.167.104.http: . ack 3091

win 15180 (DF)

57

14:38:58.219694 64.233.167.104.http > chekov.33236: .

3091:4471(1380) ack 612 win 5840

14:38:58.219717 chekov.33236 > 64.233.167.104.http: . ack 4471

win 17940 (DF)

14:38:58.220815 64.233.167.104.http > chekov.33236: P

4471:5374(903) ack 612 win 5840

14:38:58.220830 chekov.33236 > 64.233.167.104.http: . ack 5374

win 20700 (DF)

14:38:58.232981 64.233.167.104.http > chekov.33236: FP

5374:5535(161) ack 612 win 5840

14:38:58.259141 arp who-has 10.4.0.16 tell 10.4.0.1

14:38:58.261201 chekov.33236 > 64.233.167.104.http: F

612:612(0) ack 5536 win 20700 (DF)

14:38:58.264319 64.233.167.104.http > chekov.33236: . ack 613

win 5840

14:38:59.259032 arp who-has 10.4.0.16 tell 10.4.0.1

14:39:00.052594 CDP v1, ttl=180s DevID 'Lab Switch 1(000883-

432e80)' Addr (1): IPv4 127.0.0.1 PortID '6' CAP 0x08 Version:

(suppressed) Platform: 'HP 2524'

58

Results: For this test, from the output of the

module written in the logs, we see that flow 1

represents the TCP request flow from the Source

chekov (i.e. 10.4.0.2) to the destination google.com

(i.e. 64.233.167.104). Flow 2 represents the TCP

response flow from the destination google.com (i.e.

64.233.167.104) to the Source chekov (i.e.

10.4.0.2). From the logs we can also see that at the

start for flow 1 the count = 0 and the limit = 3.

When the first data packet is sent for flow 1,

at 14:38:56.455455, it caught by the search function

of the module and the value of count is incremented

by 1 for this flow and hence count becomes 1.

Further we see that (count > limit) is not true,

hence this packet is dropped.

The first retransmission of this packet is sent

at 14:38:56.663365. For this packet too, the search

string (rainfall) in the data packet is caught by

the search function of the module and the value of

count is incremented by 1 for this flow and hence

count becomes 2. Further we see that (count > limit)

is not true, hence this packet also is dropped.

The second retransmission of this packet is

sent at 14:38:57.083355. For this packet too, the

59

search string (rainfall) in the data packet is

caught by the search function of the module and the

value of count is incremented by 1 for this flow and

hence count becomes 3. Further we see that (count >

limit) is not true, hence this packet also is

dropped.

The third retransmission of this packet is sent

at 14:38:57.923357. For this packet too, the search

string (rainfall) in the data packet is caught by

the search function of the module and the value of

count is incremented by 1 for this flow and hence

count becomes 4. Further we see that (count > limit)

is true, hence this packet is not dropped.

 The above data can be tabulated as shown below

For Flow 1
String

Present
Count Limit

Drop Decision

Count>limit

Data Packet Yes 1 3 Drop

Retransmission 1 Yes 2 3 Drop

Retransmission 2 Yes 3 3 Drop

Retransmission 3 Yes 4 3 Do Not Drop

60

The analysis of this data gives us the

following results with respect to TCP behavior.

For Flow 1 Time Time Interval

Data Packet 14:38:56.455455

Retransmission 1 14:38:56.663365 0.20791

Retransmission 1 14:38:57.083355 0.41999

Retransmission 1 14:38:57.923357 0.840002

We can clearly see that the First

retransmission is done 207 m secs after the

transmission of the original Data Packet. The Second

retransmission is done 420 m secs after sending out

the First retransmission. We can see that the wait

time of TCP has almost doubled. Further we see that

Third retransmission is done 840 m secs after

sending out the Second retransmission. We can see

that the wait time of TCP is almost twice of it’s

previous wait time. Thus we can confirm TCP

retransmission behaviors with the outputs of this

software.

61

5. Applications

This software can be used as a limiting firewall

for institutions like universities and companies.

e.g.:- Most of the commercially available

firewalls do filtering on the basis of the URL,

i.e. if an organization has a firewall to block

employees from accessing shopping sites, it

usually has a static list having all the blocked

sites. One disadvantage of this method is that

this static list needs to updated frequently also

at any point of time there is a possibility that

we do not cover all the sites needed to be

blocked. Some of the firewalls dynamically check

the URL for blocked content. i.e. if anyone types

http://www.onlineshopping.com . The firewall

catches the pattern “shopping” in the URL and

blocks access, but there is big loop hole in this

method. i.e. we can still access this site

through the same firewall all we need to do is

get the ip address of the server using either

nslookup or dig or host, i.e. nslookup

http://www.onlineshopping.com , which gives us an

address like 216.109.118.78. Now we can access

62

the site through the firewall using

http://216.109.118.78 . This happens because

other firewalls check only the URL and do not

check the TCP Data part. Using my firewall all we

need to do is set the search string to shopping

and set a very high limit. If the users behind my

firewall try to access the site using the URL

http://www.onlineshopping.com , the packets are

dropped at the router itself and the request

doesn’t reach the server itself. On the contrary

if the user tries to access the site using the

URL http://216.109.118.78 , the request would go

through but the response packets will contain the

pattern shopping and hence will be dropped at the

router, never reaching user. Thus using this

firewall we can successfully isolate a user from

unauthorized access to sites or servers. Also

this software does not have any overhead of

maintaining lists or URLs.

It can be used as a lightweight simulator. e.g.:-

This software can be used to generate different

types of TCP/IP patterns, which can be given as

input to other network programs.

63

Using this simulator we can study the behavior of

TCP for different types of drop patterns. e.g.:-

This program can generate various types of drop

patterns, hence it can be used to study the

behavior of TCP for different drop patterns.

Using this we can verify many TCP concepts like

slow start, flow management etc. This can be

achieved ny changing the value of limit in the

Firewall software.

This project uses link list where memory is

dynamically allocated and deallocated, hence its

use is time independent. So this project can be

used to develop time independent software for the

kernel.

This project can be used for studying as to how

exactly a flow is created, maintained and

finished; we can also see as to which format is

the data actually sent. This can be done by

checking the log files created by this software.

The log files are located at “/var/logs” and the

default log file is “messages”.

64

6. Future Enhancements

Ability to search a pattern or regular expression

rather than a strict string. Eg.xx.xx.xx.xx

To do flow maintenance based on time i.e. using

“jiffies” to insert timestamps to the nodes

whenever they are accessed. In this method the

dead flows will not be accessed for a longer time

as compared to the flows alive, hence we can

delete all the dead flows, which have older

timestamps.

To allow different keywords for different flows.

Implementing functionality to allow user input of

the search keyword.

To use KVM Algorithm or Suffix trees to

preprocess the string in order to improve the

search time.

65

7. Bibliography

Behrouz A. Forouzan, 2003, TCP/IP Protocol Suite,

Mc Graw Hill.

A Map of the Networking Code in Linux Kernel

2.4.20 by M. Rio et al. 31 March 2004.

Hacking the Linux Kernel Network Stack

http://www.phrack.org/show.php?p=61&a=13

The “Networking” code in Linux, Teunis J. Ott and

Rahul Jain July 29, 2004

 D0 Code – comprehensively cross – referenced and

searchable code

http://www-d0.fnal.gov/D0Code/source/

The journey of a packet through the linux 2.4

network stack - Harald Welte

http://gnumonks.org/ftp/pub/doc/packet-journey-

2.4.html

http://gnumonks.org/papers/netfilter-

The netfilter framework in Linux 2.4 - Harald

Welt

lk2000/presentation.html

 Overview of Routing and Packet Filter

Interactions

http://linux-ip.net/html/adv-overview.html

66

 The Packet handling in default Linux kernel 2.4

has been taken from

http://open-source.arkoon.net/kernel/kernel_net.png

67

