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Abstract

The “square root formula” for TCP (Traffic Control Protocol) in IP states that

if the probability p of packet loss becomes small, and there is independence between

packets, the stationary distribution of the congestion window W becomes such that

the distribution of W
√

p becomes almost independent of p, and is completely char-

acterizable.

This paper gives an elementary proof of the convergence of the stationary dis-

tributions, for a much wider class of processes that includes classical TCP as well

as Tom Kelly’s “Scalable TCP”. This paper also gives stochastic dominance results

that translate to a rate of convergence.

1 Introduction

The paper [3] proposes a class of “TCP–like” Internet Transport Protocols and uses a

class of stochastic processes to analyze the performance of these protocols. That class of

stochastic processes is defined by:
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Let (Un)∞n=0 be independent, identically distributed random variables, each distributed

uniformly [0, 1]. Let p be a probability, 0 < p < 1. Define the i.i.d. random variables χp,n

by

χp,n =











success if Un ≥ p

failure if Un < p
(1.1)

Further, let the discrete time, continuous state space process W ∗
p,C,n (n = 0, 1, 2, · · · ,

0 < W ∗
p,C,n < ∞, 0 < p < 1) be defined by

W ∗
p,C,n+1 =











W ∗
p,C,n + c1(W

∗
p,C,n)

α if χp,n = success,

max
(

W ∗
p,C,n − c2(W

∗
p,C,n)

β, C
)

if χp,n = failure,
(1.2)

where α < β ≤ 1, c1 > 0, c2 > 0, C > 0.

The special case with β = 1, α = −1, c1 = 1, c2 = 1
2

and (for example) C = 1 models

“classical TCP”.

The special case with β = 1, α = 0 models Tom Kelly’s “Scalable TCP”, see [8, 9].

The paper [3] shows that the more general case, even the case 0 < α < β ≤ 1, is of

interest in the study of transport protocols.

In [4] it is proven that for all values α < β ≤ 1, c1 > 0, c2 > 0, C > 0, 0 < p < 1

(and 0 < c2 < 1 if β = 1) the process W ∗
p,C,n has a unique stationary distribution.

The uniqueness of that stationary distribution is derived from the fact that eventually

W ∗
p,C,n = C for some (possibly large) n.

In this paper we will study the case α < β = 1, c1 > 0, 0 < c2 < 1 and we will write

1− c2 = b. In this case we will see that we can drop the “max (..., C)” in (1.2) (or choose

C = 0). We will be mostly interested in the case C = 0, but after the case C = 0 has

been studied we will observe consequences for the process with C > 0.
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A process of further interest in this paper therefore is defined by

Wp,n+1 =











Wp,n + c1(Wp,n)
α if χp,n = success,

Wp,n − (1 − b)Wp,n = bWp,n if χp,n = failure.
(1.3)

but we will also draw some conclusions for the process (W ∗
p,C,n)

∞
n=0 defined by

W ∗
p,n+1 =











W ∗
p,n + c1(W

∗
p,n)

α if χp,n = success,

max(bW ∗
p,C,n, C) if χp,n = failure.

(1.4)

Not surprising, for p ↓ 0 the two processes Wp,n and W ∗
p,n become “very similar”, in a

way that will be explained in Section 16.

We always choose 0 < Wp,0 < ∞ and therefore have

0 < bnWp,0 ≤ Wp,n < ∞ for all n ≥ 0. (1.5)

If α = −1, c1 = 1, b = 1
2

(1.3) models the feedback process for the congestion window

in TCP, see e.g. [2] and [1]. In the TCP environment, “success” stands for arrival of

a “good acknowledgment” (one which positively acknowledges safe arrival of new and

contiguous data), whereas “failure” stands for loss of a data packet. For certain values

of α, c1, and b the process in (1.3) is a candidate for similar control mechanisms. Of the

papers just cited, [2] has existed on the Internet since 1996 and is frequently cited, but has

never been published in the open literature. [1] is a re-write (draft) of [2] to be submitted

soon. [13, 14] give more references to literature on this topic.

This paper, and the ones just mentioned, use “packet–time”: progress of time is

(essentially) measured by the number of “good acknowledgments” that have been received.

Many other papers studying TCP performance use “clock–time” where (apart from during

slowstart and fast recovery) time is measured in RTTs (Round Trip Times) or periods of

time during which W “good” acknowledgments are received, usually under the assumption
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that during that time at most one packet gets lost or marked. If α = −1 the window

increases by almost exactly c1 MSSs during such a period. The assumption that at most

one reduction of the congestion window occurs during one RTT is reasonable if α < 0 but

questionable if 0 ≤ α, see [3]. The paper [2] contains a translation between “packet time

stationary” and “clock time stationary” distributions.

The somewhat overly complicated construction (1.1) and (1.3) to define the process

Wp,n was chosen because later in this paper there will be a number of stochastic processes

“coupled” to the stochastic process Wp,n by being generated by the same sequence of

successes and failures.

Writing

ζp(t) = p
1

1−α Wp,b t
p
c (1.6)

we see that as long as there is “success” we have

ζp(t + p) − ζp(t)

p
= c1(ζp(t))

α. (1.7)

Hence, when p ↓ 0 we approach the situation where there is a Poisson Process with

intensity 1, with “events” · · · , τ−1, τ0, τ1, · · ·, with a process ζ(t) defined by

d

dt
ζ(t) = c1(ζ(t))α (1.8)

“in between” the events of the Poisson Process, and

ζ(τ+) = bζ(τ−) (1.9)

“in” the points of the Poisson process.

If we now define

Z(t) =
(ζ(t))1−α

(1 − α)c1

(1.10)

then
d

dt
Z(t) = 1 (1.11)
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“in between” the events of the Poisson Process, and

Z(τ+) = b1−αZ(τ−) (1.12)

“in” the events of the Poisson process. Henceforth we write c for b1−α.

As in [2] or [1] we see that the process Z(.) has as stationary distribution the distri-

bution of

Z =
∞
∑

k=0

ckEk, (1.13)

where (Ek)
∞
k=0 are independent, identically distributed random variables, each exponen-

tially distributed with parameter 1. The distribution of Z in (1.13) is completely described

in [2] and in [1]. For example, we have that for all (even complex) ν

E[Zν] = Γ(ν + 1)
∞
∏

k=0

1 − cν+k

1 − ck
. (1.14)

If ν is integer this reduces to (k is a positive integer):

E[Zk] =
k!

(1 − c)(1 − c2) · · · (1 − ck)
,

E[Z−k] =
(1 − c)(1 − c2) · · · (1 − ck−1)

(k − 1)!c
1
2
(k−1)k

log
(

1

c

)

. (1.15)

Analogous to (1.6) we define, for C > 0,

ζ∗
p,C(t) = p

1
1−α W ∗

p,C,b t
p
c. (1.16)

In this paper we will study, for p ↓ 0, the stationary distribution of the process (Vp,n)
∞
n=0

defined by

Vp,n =
p

(1 − α)c1
(Wp,n)

1−α =
(ζp(pn))1−α

c1(1 − α)
. (1.17)

Results for that process (Vp,n)
∞
n=0 can be translated into results for the process (V ∗

p,C,n)
∞
n=0

defined by

V ∗
p,C,n =

p

(1 − α)c1

(

W ∗
p,C,n

)1−α
=

(ζ∗
p,C(pn))1−α

c1(1 − α)
. (1.18)
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These processes evolve as

Vp,n+1 =











Vp,n

(

1 + p

(1−α)Vp,n

)1−α
if χp,n = success,

cVp,n if χp,n = failure,
(1.19)

and

V ∗
p,C,n+1 =















V ∗
p,C,n

(

1 + p

(1−α)V ∗
p,C,n

)1−α

if χp,n = success,

max(cV ∗
p,C,n,

pC1−α

(1−α)c1
) if χp,n = failure.

(1.20)

We will first study the stationary distributions of the process Vp,n and then find a

simple way of translating results into results on stationary distributions of V ∗
p,C,n.

When possible, final results are formulated for the two cases C = 0 and C > 0 together,

i.e. for the processes ζ∗
p,C(t) and V ∗

p,C,n with C ≥ 0.

In [4] it is proven that if C > 0 the stationary distribution of V ∗
p,C,n exists and is

unique.

In [5] it is proven that a stationary distribution for Vp,n (i.e. C = 0) exists, but the

approach in that paper does not prove uniqueness. More on this topic later.

In [4] it is proven that for all C ≥ 0 (constant), if p ↓ 0, the process

(ζ∗
p,C(t))1−α

(1 − α)c1

(1.21)

converges weakly to the process Z(.). While the result is “obvious”, the proof is not.

If 0 ≤ α < 1 the stationary distribution of Vp,n (C = 0) is unique, see the next section.

A technical problem is that in the case α < 0 we have not proven (yet?) uniqueness of the

stationary distribution of Vp,n. Thus, when we say that the stationary distribution of Vp,n

converges to the distribution in (1.13) we really mean that whatever way we choose the

stationary distributions of Vp,n, for p ↓ 0 they converge to the distribution in (1.13). In the

remainder of this paper we will prove that this is indeed the case, and obtain stochastic
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dominance results and “rate of convergence” results for the converging stationary distri-

butions. Section 11 contains more of a discussion of stationary distributions.

Processes as studied in this note have also been studied in e.g. [13], [14], which

among other results prove weak convergence of stationary distributions, for the “clock

time process”, in the case α = −1 (the TCP situation). [13, 14] use a different proof

technique and do not have stochastic dominance results or rate of convergence results.

The paper [3] studies issues leading up to stability of feedback protocols (through

consideration of relaxation times), both in the situation of this paper (β = 1) and in the

case (β < 1).

Among the many other papers doing mathematical analysis of the performance of

TCP we only mention [10], [11], and in particular [12], which (in “clock time”) studies

the case of scalable TCP (α = 0). The last six papers cited contain an extensive review

of the literature.

Among the results obtained in this paper are the Theorems below:

Theorem 1:

Let Vp have a stationary distribution of the process (Vp,n), and let for some C > 0 V ∗
p,C

have the stationary distribution of the process (V ∗
p,C,n). Then for p ↓ 0 the distributions

of Vp and V ∗
p,C converge weakly to the distribution of Z.

The main focus of this paper is on the process Vp,n, i.e. the case C = 0. Once results

for that case are available there are corollaries for the case C > 0, i.e. the process V ∗
p,C,n.

More detailed results describe the rate of convergence in Theorem 1, and indicate that

the “error” in Theorem 1 is O(p). For more detailed results we must differentiate between

the cases α ≤ 0 and 0 ≤ α < 1:

Theorem 2:

Let α ≤ 0. Let for some C ≥ 0 V ∗
p,C have the stationary distribution of (V ∗

p,C,n). Then
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for every −∞ < ν < +∞:

lim
p↓0

E[(V ∗
p,C)ν] = E[Zν], (1.22)

and the joint distributions of (V ∗
p,C, Z) can be chosen such, that for every ν ≥ 0

lim sup
p↓0

E

[∣

∣

∣

∣

∣

Z − V ∗
p,C

p

∣

∣

∣

∣

∣

ν]

< ∞, (1.23)

In other words, every sequence of positive probabilities p converging to zero has a sub-

sequence pk for which Errpk
=

Z−Vpk

pk
converges weakly to a random variable Err. That

random variable Err then has all moments E[|Err|ν] (ν ≥ 0) finite, and for all ν ≥ 0

E[|Errpk
|ν] converges to E[|Err|ν], with a similar result for V ∗

p,C.

Theorem 3:

Let 0 ≤ α < 1. Let for some C ≥ 0 V ∗
p,C have the stationary distribution of (V ∗

p,C,n).

Then for every 0 ≤ ν < +∞:

lim
p↓0

E[(V ∗
p,C)ν] = E[Zν], (1.24)

and the joint distribution of (Vp, V
∗
p,C, Z) can be chosen such, that for every integer k ≥ 1

lim sup
p↓0

E

[ |Z − V ∗
p,C|k

p

]

< ∞, (1.25)

In other words, if 0 < α < 1 the limiting random variable Err has a finite first moment,

but has not been proven to have any higher moments. In the case C = 0 the joint

distribution can be chosen such that also

P







Vp ≤
Z

1
p
| log (1 − p)| < Z







= 1, (1.26)

The Theorems above will first be proven for the process Vp,n. Section 16 contains

mechanisms to translate results for the process Vp,n into results for the process V ∗
p,C,n.

For the proofs for the process Vp,n we introduce a number of auxiliary stochastic

processes that will provide the desired stochastic bounds and thus prove results stronger

than the Theorems above.
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Sections 4 and 8 introduce these auxiliary stochastic processes and formulate the

stronger results of which the Theorems above are corollaries.

In the results above we let p ↓ 0 while C is constant (possibly zero). We also can

consider the problem of what happens if p > 0 is constant and C ↓ 0. Clearly, in that

case (with Vp,0 = V ∗
p,C,0)

lim
C↓0

V ∗
p,C,n = Vp,n. (1.27)

However, convergence of processes does not always guarantee convergence of stationary

distributions. If 0 ≤ α < 1 we do have uniqueness of the stationary distribution of Vp,n

(see the end of this introduction) and weak convergence of the stationary distributions of

V ∗
p,C,n to the stationary distribution of Vp,n, see Section 3.

In the Sections 4 etc we derive and use “stochastic dominance results” where vari-

ous processes defined on the basis of the same sequence (χp,n)∞n=0 (all the same p) are

compared. Only in Section 3 do we compare processes for different p.

2 Uniqueness of Stationary Distributions

As stated before, in the case with 0 ≤ α < 1 the processes Wp,n and Vp,n have unique

stationary distributions on (0,∞), even though C = 0. It must be noted that as long as

0 < α < 1 there also is a stationary distribution concentrated in the point {0}, and of

course linear combinations of the two distributions are also stationary.

The existence of a stationary distribution concentrated on (0,∞) will be proven in the

remainder of this paper. In this section we prove the uniqueness.

The uniqueness follows from the observation that if we have two starting positions

Wp,0,1 and Wp,0,2 which give rise to the processes (Wp,n,1)
∞
n=0 and (Wp,n,1)

∞
n=0, if 0 ≤ α < 0
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and 0 < Wp,0,2 < Wp,0,2 then 0 < Wp,n,1 < Wp,n,2 for all n, and Wp,n,1

Wp,n,2
is non–decreasing:

remains the same at failures, increases at successes, and converges to one for n → ∞.

Thus, if 0 < α < 1 the distribution of Wp,n becomes independent on Wp,0 for n → ∞.

Once we have proven that there exists a stationary distribution on (0,∞) we have proven

the required result (for 0 ≤ α < 1).

In the case α = 0 we can even choose Wp,0 = 0 and still converge to the unique

stationary distribution. In this case the stationary distribution of Vp,n can be explicitly

described, see Section 4.

By [5], if α < 0 the processes Wp,n and Vp,n still have a stationary distribution, but in

this case we have been unable top prove uniqueness. While we believe all such stationary

distributions to be unique, we can not exclude the possibility that there are combinations

of c1, b, α and p with weird number–theoretic properties for which the set (0,∞) is divided

in non-communicating sets.

These sets might (in theory!) even have periodicities.

A method which we hope could be used to prove uniqueness even with α < 0 is

described in Section 13.

Simulation can not be used to investigate the (barely) conceivable non-uniqueness.

Finite precision would destroy the (barely) conceivable weird number–theoretic properties,

and in simulation we would in fact always have a positive (though tiny) C > 0.

3 Stochastic dominance and different p and C

With decreasing p there are more successes and fewer failures, so a natural question to ask

is whether with decreasing p (and say W ∗
p,C,0 constant) W ∗

p,C,n is increasing. This seems

not to be true in general, but becomes true for many choices of the “minimal value” C in
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(1.2). As in the remainder of this paper we have β = 1, 0 < c2 < 1. Some of the results

in this Section still hold if β < 1.

We define:

m =











0 if 0 ≤ α < 1,

(c1|α|)
1

1+|α| if α ≤ 0,
(3.1)

We then have:

Observation: If C ≥ m then we have the monotonicity result that if 0 < p1 ≤ p2 < 1

and W ∗
p1,C,0,1 ≥ W ∗

p2,C,0,2 (and (W ∗
p,C,n,i)

∞
n=0 generated from W ∗

p,C,0,i in the obvious way)

then

W ∗
p1,C,n,1 ≥ W ∗

p2,C,n,2 for all n ≥ 0. (3.2)

Hence we have:

Observation: If C ≥ m and 0 < p1 < p2 < 1 then the stationary distribution for p1 is

“stochastically larger” than the stationary distribution for p2. (See [16] or Section 4 for a

discussion of “stochastically larger”.)

The requirements that C ≥ m may very well be indispensable: If C < m a smaller

value of W ∗
p,C,n now may lead to a larger value of W ∗

p,C,n+k later on.

It also is clear that (with W ∗
p,C,0 constant) W ∗

p,C,n is increasing with C for C ≥ m.

Hence, the stationary distribution of W ∗
p,C,n is stochastically increasing with C if C ≥ m.

If m = 0 (0 ≤ α < 1) this implies that the stationary distribution of Wp,n is the weak

limit of the stationary distributions of W ∗
p,C,n for C ↓ 0.

In the case α < 0, β = 1, 0 < c2 < 1 we have that m > 0, and for Wp,n very small

the upward jumps become very large.

Also in this case it “should be possible” to prove uniqueness of the stationary distribu-

tion of Wp,n by proving that it is the weak limit of the stationary distributions of W ∗
p,C,n

for C ↓ 0 (stochastic monotonicity or not). We have not yet been able to prove this.
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4 Method of attack and intermediate results

We define the process (Xp,n)
∞
n=0 by

Xp,n+1 =











Xp,n + p if χp,n = success,

cXp,n if χp,n = failure.
(4.1)

and we give Xp,0 and Vp,0 some joint distribution.

Since the processes (Vp,n)
∞
n=0 and (Xp,n)

∞
n=0 are driven by the same sequence of “suc-

cesses” and “failures”, the processes are dependent and (Xp,n)
∞
n=0 and (Vp,n)

∞
n=0 have a

joint distribution. For this joint distribution we will prove:

Lemma 1: If α ≤ 0 and for some k ≥ 0 Vp,k ≥ Xp,k then Vp,n ≥ Xp,n for all n ≥ k.

If 0 ≤ α < 1 and for some k ≥ 0 Vp,k ≤ Xp,k then Vp,n ≤ Xp,n for all n ≥ k.

If α = 0 and for some k ≥ 0 Vp,k = Xp,k then Vp,n = Xp,n for all n ≥ k.

This Lemma will be proven in Section 7.

We also have:

Lemma 2: The process (Xp,n)
∞
n=0 has a unique stationary distribution. If Xp has this

stationary distribution then Xp is of the form

Xp = p
∞
∑

k=0

ckGp,k, (4.2)

where (Gp,k)
∞
k=0 are independent, identically distributed random variables, each geomet-

rically distributed with parameter 1 − p:

P{Gp,k = n} = p(1 − p)n. (4.3)

Hence, Xp has Laplace–Stieltjes Transform

φXp(s) = E[exp{−sXp}] =
∞
∏

k=0

p

1 − (1 − p)exp{−pcks} , (4.4)
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and

E[Xp] =
1 − p

1 − c
, Var(Xp) =

1 − p

1 − c2
. (4.5)

There are at least two obvious ways to prove Lemma 2. The most intuitive proof

duplicates the proof, given in [2], of the similar result (1.13) for the process (Z(t)). This

proof works by “looking back in time”. A less intuitive proof uses the fact that

E[exp{−sXp,n}] = (1 − p)E[exp{−s(Xp,n−1 + p)}] + pE[exp{−scXp,n−1}]. (4.6)

Assuming that Xp,n−1 and Xp,n have the same distribution leads to a daisy–chain that

proves (4.4), and thus Lemma 2.

(4.1) trivially shows that

E[Xp,n] =
1 − p

1 − c
+ (1 − p(1 − c))n

(

E[Xp,0] −
1 − p

1 − c

)

, (4.7)

which, among other things, proves tightness. In addition, if we have two different initial

values Xp,0,1 and Xp,0,2 then with the identical sequences of successes and failures we have

Xp,n,1 − Xp,n,2 = cN(n)(Xp,0,1 − Xp,0,2) (4.8)

for all n ≥ 0, where N(n) is the number of failures among χ0, · · · , χn−1. This proves that

the distribution of Xp,n becomes independent of Xp,0 and n. Details are left to the reader.

Lemmas 1 and 2 make a start with providing stochastic bounds for stationary distri-

butions of the process (Vp,n)
∞
n=0. If α < 0 they provide a stochastic lower bound, proving

that V = 0 is not a critical point. If 0 < α < 1 they provide a stochastic upper bound,

proving that V = ∞ is not a critical point. It will be proven that these bounds are

asymptotically tight if p ↓ 0.

Before providing the lacking bounds, we show that the stationary distribution of Xp,n

is very close to the distribution of the random variable Z in (1.13). It is clear that that
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random variable Z has Laplace–Stieltjes Transform

φZ(s) = E[exp{−sZ}] =
∞
∏

k=0

1

1 + cks
, (4.9)

and

E[Z] =
1

1 − c
, Var(Z) =

1

1 − c2
. (4.10)

It is immediately obvious that for p ↓ 0 the Laplace–Stieltjes transform (4.4) converges

to the Laplace–Stieltjes transform (4.9). Thus, the distribution of Xp converges weakly

to the distribution of Z. However, more can be said:

Lemma 3: The random variables Xp in (4.2) and Z in (1.13) can be given a joint

distribution for which with probability one

max(0,
Z

1
p
log 1

1−p

− p

1 − c
) < Xp ≤

Z
1
p
log 1

1−p

< Z, (4.11)

and hence, (for that joint distribution), for ν ≥ 0,

E[| Z
1
p
log 1

1−p

− Xp|ν] = E[(
Z

1
p
log 1

1−p

− Xp)
ν] ≤

(

p

1 − c

)ν

. (4.12)

We remind the reader (see e.g. [16]) that the random variable S is stochastically

smaller than the random variable T if P{S ≤ x} ≥ P{T ≤ x} for all x. This is the case

if and only if there is a joint distribution of S and T for which P{S ≤ T} = 1. Thus, we

have proven that Xp is stochastically smaller than Z
1
p

log 1
1−p

, and that the distributions are

almost the same. This type of argument will be used several times in this paper.

Proof of Lemma 3: If E is an exponentially distributed random variable with

parameter 1 (and therefore expected value 1), then the random variable Hp defined by:

if n log

(

1

1 − p

)

≤ E < (n + 1) log

(

1

1 − p

)

then Hp = np (4.13)

has the property that

P{Hp = np} = p(1 − p)n. (4.14)
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Thus, if (Ek)
∞
k=0 are i.i.d., exponentially distributed with parameter 1, and we define

(Hp,k)
∞
k=0 functions of (Ek)

∞
k=0 as in (4.13), and then define

Z =
∞
∑

k=0

ckEk, Xp =
∞
∑

k=0

ckHp,k, (4.15)

then Z and Xp have the required marginal distributions and (4.11) holds with probability

one, etc.

The “Line of Attack” now is clear: we have proven that for p small Xp and Z have

almost the same distribution (including a rate of convergence result). In fact, the distri-

bution of Xp is even closer to the distribution of Z
1
p

log 1
1−p

.

Left to be proven is that the (or “any”) stationary distribution of Vp,n must, for p

small, be very close to the distribution of Xp.

For that result we need different approaches in the cases α < 0 and 0 < α < 1.

In the case 0 < α < 1 we will use “Linear Programming and Duality”, see Sections 14

and 15.

In the case α < 0 the approach will be as follows: we define

c(α) =
1

(1 + |α|)2
sup

0<z≤1





(

(1 + z)1+|α| − 1 − (1 + |α|)z
)

z2



 , (4.16)

d(α) =
1

(1 + |α|)1+|α|
sup

0<x≤1

(

(1 + x)1+|α| − x1+|α| − x|α|(1 + |α|)
)

, (4.17)

and then define the function fp,α(.) : (0,∞) → (0,∞) by

fp,α(v) =











c(α)p2

v
if p

1+|α|
≤ v < ∞,

d(α)p1+|α|

v|α| if 0 < v < p

1+|α|
,

(4.18)

Next, we define the stochastic process (Yp,n)
∞
n=0 by

Yp,n+1 =











Yp,n + p + fp,α(Xp,n) if χp,n = success,

cYp,n if χp,n = failure,
(4.19)
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where Xp,0, Vp,0, and Yp,0 are given some joint distribution. Since the processes Xp,n, Vp,n

and Yp,n all three are defined on the basis of the same sequence of successes and failures,

all these random variables have a well defined joint distribution.

As in (4.8) we observe that if we have two starting values Yp,0,1 and Yp,0,2 for the process

Yp,n, but identical sequences of successes and failures, and identical values for Xp,0 and

therefore identical sequences (Xp,n)
∞
n=0, then

Yp,n,1 − Yp,n,2 = cN(n)(Yp,0,1 − Yp,0,2). (4.20)

Therefore, if the process (Xp,n, Yp,n) has a stationary distribution, that stationary distri-

bution is unique.

Lemmas 4 below will be proven in Section 8.

Lemma 4: If α ≤ 0 (and c(α) and d(α) are chosen as above) and for some k

Xp,k ≤ Vp,k ≤ Yp,k

then

Xp,n ≤ Vp,n ≤ Yp,n for all n ≥ k. (4.21)

(4.19) and (4.21) trivially show that if (Xp, Vp, Yp) has a joint stationary distribution of

the process (Xp,n, Vp,n, Yp,n) and E[Yp] < ∞ then

P{0 < Xp < Vp < Yp < ∞} = 1 and E[Yp − Xp] =
(1 − p)

(1 − c)p
E[fp,α(Xp)]. (4.22)

This makes it mandatory to compute E[fp,α(Xp)]. It must be noted that while Xp,n is

guaranteed to have a stationary distribution (and this stationary distribution is unique),

there is no guarantee that Yp,n has a stationary distribution. If Yp,n has a stationary

distribution then it is unique and (Xp,n, Vp,n, Yp,n) has a joint stationary distribution, and

(4.22) holds. We will see that if α < 0 there exists a stationary distribution for Yp with

E[Yp] < ∞ if and only if E[fp,α(Xp)] < ∞.
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Lemma 5 below will be proven in Section 10.

Lemma 5: If α < 0 and Xp has the distribution as in (4.4) then

E[f(Xp)] = p2

(

c(α)E[
1

Xp

χ(Xp ≥ p

1 + |α|)] +
(

p

c

)|α|

d(α)E[
1

X
|α|
p

χ(Xp <
p

c(1 + |α|))]
)

,

(4.23)

where of course χ(.) is the indicator function. Lemma 5 makes it necessary to study

E[(Xp)
ν] for ν < 0.

As simple corollary of Lemma 3 and (1.14) (and the Helly-Bray theorem, see e.g. [15])

we see that for all ν ≥ 0 E[Xν
p ] ≤ E[Zν] < ∞ and

lim
p↓0

E[Xν
p ] = E[Zν]. (4.24)

We will see that (practically speaking) (4.24) also holds for ν < 0, with the restriction

that now p must be sufficiently small to guarantee that E[Xν
p ] < ∞:

Lemma 6: For every ν > 0 there exists a 0 < p(ν) < 1 and a 0 < B(ν) < ∞ such,

that

E[X−ν
p ] ≤ B(ν) for all 0 < p ≤ p(ν). (4.25)

Lemma 6 will be proven in Section 6. As by-product of the proof of Lemma 9 in Section

5 we will see that

E[X−ν
p ] < p−ν 1 − p

1 − pcν
if ν ≥ 0 and 0 < p < cν. (4.26)

However, that result does not produce the uniformity of B(ν) in p.

Corollary 1: (4.24) holds for all −∞ < ν < +∞.

Corollary 2: If α < 0 and 0 < p ≤ min(p(1), p(|α|)) then (Xp,n, Yp,n) has a unique

stationary (joint) distribution, and there exists a 0 < D(α) < ∞ such, that if (Xp, Yp)

has the joint stationary distribution then

P{0 < Xp ≤ Yp < ∞} = 1 and E[Yp − Xp] ≤ pD(α) for all 0 < p ≤ min(p(1), p(|α|)).
(4.27)
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5 The process (log
(1−α)Vp,n

p )∞n=0

We first derive two results (Lemmas 7 and 8) that neither depend on, nor are used in the

proofs of, the results in Section 4.

We re-write (1.19) as

log
(1 − α)Vp,n+1

p
=











log (1−α)Vp,n

p
+ (1 − α) log

(

1 + p

(1−α)Vp,n

)

if χp,n = success,

log (1−α)Vp,n

p
+ log c = log (1−α)Vp,n

p
− | log c| if χp,n = failure.

(5.1)

We now must study the consequences of (5.1) separately for α ≤ 0 and 0 ≤ α < 1.

First we consider the case α ≤ 0. In this case, immediately after every “success” we

have

log
(1 + |α|)Vp,n+1

p
≥ (1 + |α|) log (1 + |α|) − |α| log |α| ≥ 0. (5.2)

Define the stochastic process Np,n by

Np,n+1 =











0 if χp,n = success,

Np,n − | log c| if χp,n = failure.
(5.3)

It is clear that after the first “success”, forever Np,k ≤ log
(1+|α|)Vp,k

p
. It also is clear

that the process Np,n is stationary, with stationary distribution

P{Np = −k| log c|} = pk(1 − p), E[Np] = − p

1 − p
| log c|. (5.4)

Thus,

Lemma 7: If α ≤ 0 then for any stationary distribution of Vp,n:

P{log
(1 + |α|)Vp

p
≤ −k| log c|} ≤ pk (5.5)
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for every nonnegative integer k, and

E

[∣

∣

∣

∣

∣

log
(1 + |α|)Vp

p

∣

∣

∣

∣

∣

χ

(

log
(1 + |α|)Vp

p
≤ 0

)]

< E[|Np|] =
p

1 − p
| log c| < ∞, (5.6)

where of course χ(.) is the indicator function.

Next, we consider the case 0 ≤ α < 1. In this case we have immediately after every

success

log
(1 − α)Vp,n+1

p
> α log

(1 − α)Vp,n

p
. (5.7)

In this case we define the stochastic process Mp,n by

Mp,n+1 =











αMp,n if χp,n = success,

Mp,n − | log c| if χp,n = failure.
(5.8)

It is easily seen that if now Mp,n ≤ log (1−α)Vp,n

p
for some n, then this holds for all

k ≥ n. Also, the process Mp,n is stationary. It is easily seen (see the similar result for the

process Xp,n in the previous section) that the stationary distribution has the form

Mp = −| log c|
∞
∑

k=0

αkQk, (5.9)

where the Qk are i.i.d geometrically distributed random variables, with

P{Qk = n} = pn(1 − p), (5.10)

thus

E[exp{−sMp}] =
∞
∏

k=0

1 − p

1 − p exp{+s| log c|αk} , (5.11)

and this holds for s < | log p|
| log c|

.

Hence, E[Mp] = − p| log c|
(1−p)(1−α)

and thus we have

Lemma 8: If 0 ≤ α < 1 then for any stationary distribution of Vp,n:

P{(1 − α)V

p
≤ x} ≤ P{Mp ≤ log x}, (5.12)
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and

E

[∣

∣

∣

∣

∣

log
(1 − α)Vp

p

∣

∣

∣

∣

∣

χ

(

log
(1 − α)Vp

p
≤ 0

)]

< E[|Mp|] =
p| log c|

(1 − p)(1 − α)
< ∞. (5.13)

In addition, since (still 0 ≤ α < 1) for s ≥ 0 − s log (1−α)Vp

p
is stochastically smaller

than −sMp we have

E[exp{−s log
(1 − α)Vp

p
}] =

(

p

1 − α

)s

E[
1

V s
p

] ≤

E[exp{−sMp}] =
∞
∏

k=0

1 − p

1 − p exp{+s| log c|αk} (5.14)

as long as 0 ≤ s < | log p|
| log c|

. This gives:

Lemma 9: If 0 ≤ α < 1, if Vp has the stationary distribution of Vp,n and 0 ≤ s < | log p|
| log c|

then

E[
1

V s
p

] ≤
(

1 − α

p

)s ∞
∏

k=0

1 − p

1 − p exp{+s| log c|αk} . (5.15)

Remark: Once Lemma 1 has been proven we know that if 0 ≤ α < 1 the stationary

distribution of Vp is stochastically smaller than the stationary distribution of Xp, therefore

(for ν ≥ 0) E[ 1
Xν

p
] ≤ E[ 1

V ν
p

]. The distribution of Xp is the distribution of Vp for α = 0.

The result above yields that

E[X−ν
p ] < p−ν 1 − p

1 − pcν
if ν ≥ 0 and 0 < p < cν. (5.16)

Once also lemma 6 has been proven, Lemma 9 shows that in fact for p(ν) any p(ν) < cν

satisfies. Lemma 9 does not provide the uniform upper bound B(ν) required to prove

Lemma 6. Existence of the uniform bound will be proven in Section 6.

Next, we combine the Lemmas 7 and 8 with the results in the previous section to

obtain:
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Lemma 10: If either (0 ≤ α < 1) or (α < 0 and 0 < p ≤ min(p(1), p(|α|s))) (where

p(ν) is as in lemma 6) then for every stationary distribution of the process Vp,n,

E[| log
(1 − α)Vp

p
|] < ∞. (5.17)

Proof of Lemma 10: The part for log (1−α)Vp

p
≤ 0 has been proven in this section.

For the other part we use results from the previous section. If (α < 0 and 0 < p ≤
min(p(1), p(|α|))) we have (log Vp) < Vp ≤ Yp, and Yp has a finite first moment. If

0 ≤ α < 1 we have log Vp < Vp ≤ Xp, and Xp has a finite first moment.

Remark: A minimal modification of the proofs of the previous results also shows

tightness of the distributions of Xp,n, Vp,n, Yp,n, at least in the case where either (0 ≤ α < 1)

or (α < 0 and 0 < p ≤ min(p(1), p(|α|))).

Lemma 10 and (5.1) together give:

Theorem 4:

As long as either (0 ≤ α < 1) or (α < 0 and 0 < p ≤ min(p(1), p(|α|))) (where p(ν) is as

in lemma 6) then for every stationary distribution of the process Vp,n:

E[log (1 +
p

(1 − α)Vp

)] =
p| log c|

(1 − p)(1 − α)
. (5.18)

(Proof not needed.)

Theorem 4 will be used in the Sections 14 and 15, to cover the case 0 < α < 1.

6 The proof of Lemma 6

In order to prove Lemma 6 we observe that if Q is any non-negative random variable,

with Laplace Transform φQ(s) = E[exp{−sQ}], then for all ν > 0

∫ ∞

0
sν−1φQ(s)ds = Γ(ν)E[

1

Qν
]. (6.1)
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(No proof needed.)

We will also use the following Lemma for the Laplace Transform (4.4):

Lemma 11: If 0 < p < 1/3, 0 < rp < 1/3, and 0 < r < s, then

φXp(s) < (1 + r/2)−
log (s)−log (r)

log (1/c) . (6.2)

Once we have Lemma 11, Lemma 6 is proven as follows:

Choose ν > 0, then choose r > 0 such, that

log (1 +
r

2
) > ν log

1

c
, i.e. 1 +

r

2
>
(

1

c

)ν

. (6.3)

Write
∫ ∞

0
sν−1φXp(s)ds =

∫ r

0
sν−1φXp(s)ds +

∫ ∞

r
sν−1φXp(s)ds. (6.4)

In the first integral in the RHS of (6.4) use the fact that 0 < φXp(s) < 1. In the

second integral, s > r so as long as 0 < p < 1
3
min(1, 1

r
), the lemma can be used and

straightforward arithmetic gives

∫ ∞

0
sν−1φXp(s)ds <

rν log (1 + r/2)

ν (log (1 + r/2) − ν log (1/c))
. (6.5)

This proves Lemma 6. The proof of Lemma 10 is next:

Proof of Lemma 10:

We choose any s > 0 and any 0 < r < s. Next, we choose K0 to be the smallest

integer k for which cks < r. (K0 depends on r and s.) Since 0 < c < 1 and 0 < r < s,

K0 > 0 and

cK0−1 ≥ r

s
> cK0. (6.6)

We have

φXp(s) <
K0−1
∏

k=0

p

1 − (1 − p)exp{−pcks} . (6.7)
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We will derive an upper bound for the right hand side in (6.7). For 0 ≤ k ≤ K0 − 1

we have

ckps ≥ rp, (6.8)

and hence

exp{−ckps} ≤ exp{−rp} < 1 − rp +
(rp)2

2
. (6.9)

Hence:

1 − (1 − p)exp{−ckps} > 1 − (1 − p)(1 − rp +
(rp)2

2
) = p(1 + (1 − p)r(1 − rp

2
)). (6.10)

We check that since 0 < rp < 1/3 and 0 < p ≤ 1/3

1 − (1 − p)exp{−ckps} > p(1 +
5

6
(1 − p)r) > p(1 +

10

18
r) > p(1 +

1

2
r) > p > 0. (6.11)

Hence,

φXp(s) < (1 +
1

2
r)−K0. (6.12)

Since cK0 < r
s
, K0 > (log (s)−log (r))

log ( 1
c
)

, and

φXp(s) < (1 + r/2)
−

log (s)−log (r)
log (1/c) . (6.13)

This completes the proof of Lemma 10, and thereby the proof of Lemma 6.

7 The proof of Lemma 1

We define the function Rp,α(v) (v > 0) by

Rp,α(v) = v

(

1 +
p

(1 − α)v

)1−α

− v − p. (7.1)
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Whenever that does not lead to confusion we write R(.) for Rp,α(.). With Vp,n as in

(1.17) we re-write (1.19) as

Vp,n+1 =











Vp,n + p + R(Vp,n) if χp,n = success,

cVp,n if χp,n = failure.
(7.2)

With the substitution z = p

(1−α)v
, R(v) can be re-written as

p

(1 − α)z

(

(1 + z)1−α − 1 − (1 − α)z
)

. (7.3)

With the substitution x = (1−α)v
p

= 1
z
, R(v) can be re-written as

p

(1 − α)

(

xα(1 + x)1−α − x − (1 − α)
)

. (7.4)

This shows:

If α < 0,

0 < Rp,α(v) ≤ fp,α(v) < ∞ (7.5)

for all 0 < v < ∞, where fp,α(.) is as in (4.18),

R(v) ∼ |α|p2

2(1 + |α|)v for v ↑ ∞, R(v) ∼ p1+|α|

(1 + |α|)1+|α| v|α|
for v ↓ 0, (7.6)

and R(.) is completely monotone (see e.g. [17]), therefore also convex, and decreasing

from ∞ at 0 to 0 at ∞).

If 0 < α < 1, R(v) < 0 for all 0 < v < ∞ and

R(v) ∼ − αp2

2(1 − α)v
for v ↑ ∞, R(v) + p ∼ p1−α vα

(1 − α)1−α
for v ↓ 0, (7.7)

and −R(.) is completely monotone, therefore also convex, and decreasing, from p at 0 to

0 at ∞).

If α = 0 of course R(v) ≡ 0.
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To prove the complete monotonicity: Write R(.) as in (7.4), take the derivative with

respect to x, write the result as p

1−α
(α(B(x))α−1 + (1 − α)(B(x))α − 1) where B(x) =

x
1+x

, show that for 0 ≤ α < 1 the derivative is completely monotone as function of B

while for α ≤ 0 minus the derivative is completely monotone as function of B. Then use

the fact that B(x) as function of x is positive and has a completely monotone derivative.

An interesting special case is α = −1 (the “TCP” case), where R(v) = p2

4v
.

(4.1), (7.2) and the results for the function R above prove Lemma 1.

Conditions that guarantee E[Vp] and E[Vp − Xp] to be finite are given in Section

9. If these expected values are finite, (7.2) and (4.1) show that for the joint stationary

distribution of Xp and Vp

E[Vp − Xp] =
1 − p

p(1 − c)
E[R(Vp)]. (7.8)

If α ≤ 0 this becomes

E[Vp − Xp] = E[|Vp − Xp|] =
1 − p

p(1 − c)
E[R(Vp)], (7.9)

while if 0 < α < 1 it becomes

E[Xp − Vp] = E[|Xp − Vp|] =
1 − p

p(1 − c)
E[|R(Vp)|]. (7.10)

What we are going to do next amounts, “conceptually”, to finding an upper bound

to E[|R(Vp)|]. In the case 0 < α < 1 this is exactly what we will do. It will be done in

Section 14 and it will use the material in Section 5.

In the case α < 0 we will do something more complicated. It will be based on the fact

that in that case Vp is stochastically larger (in fact: larger with probability 1) than Xp.

To handle this case we will use, in Section 8, the process Yp,n introduced in (4.19). First

we introduce another auxiliary process.
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8 The case α < 0 and the processes Λ(k)
p,n and Yp,n

Throughout this section we have α ≤ 0. We redefine

Λ(0)
p,n = Xp,n (8.1)

and for k ≥ 1 define

Λ
(k)
p,n+1 =











Λ(k)
p,n + p + R(Λ(k−1)

p,n ) if χp,n = success,

cΛ(k)
p,n if χp,n = failure.

(8.2)

We often write Λp,n for Λ(1)
p,n. Because the function R(.) is positive and decreasing, and

because 0 < R(v) ≤ f(v), we have (Yp,n is as in (4.19)) that if for some n:

Xp,n = Λ(0)
p,n ≤ Λ(2)

p,n ≤ Λ(4)
p,n ≤ · · · ≤ Vp,n ≤ · · · ≤ Λ(5)

p,n ≤ Λ(3)
p,n ≤ Λ(1)

p,n = Λp,n ≤ Yp,n (8.3)

then this holds for all n + m ≥ n, and therefore for the stationary joint distribution, if

any. This result is often used in the situation where all processes in (8.3) have the same

initial value. For example, Vp,0 with a stationary distribution of the process (Vp,n) and

Xp,0 = Yp,0 = Vp,0 = Λ
(k)
p,0 for all k ≥ 0.

Lemma 4 is a corollary to (8.3).

We see that a sufficient condition for existence of a stationary joint distribution of this

infinite system of stochastic processes is that for the stationary distribution of Xp,n:

E[f(Xp)] < ∞. (8.4)

We will see that in fact

E[f(Xp)] = O(p2) for p ↓ 0. (8.5)

and

E[Vp − Xp] ≤ E[Λp − Xp] =
1 − p

p(1 − c)
E[R(Xp)] ≤

1 − p

p(1 − c)
E[f(Xp)]. (8.6)
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and in general

E[Λ(k+1)
p − Λ(k)

p ] =
1 − p

p(1 − c)
E[R(Λ(k)

p ) − R(Λ(k−1)
p )]. (8.7)

In Section 13 it will be shown that in fact for the stationary distributions of the

processes Λ(k)
p

E[|Λ(k)
p − Λ(k−1)

p |ν] 1
ν = O(pk) (p ↓ 0). (8.8)

This almost, but not quite, proves the uniqueness of the stationary distribution of Vp.

The problem is that for k → ∞ the constants in the big O functions may go to infinity

faster than pk goes to zero. With some extra work the proofs that lead to (8.8) can be

modified to prove that for p ↓ 0 E[Vp − Xp] is O(p) but not o(p).

9 Upper Bounds for various Moments

(4.1) and (8.2) (with k = 1) show that

Λp,n+1 − Xp,n+1 =











(Λp,n − Xp,n) + R(Xp,n if χp,n = success,

c(Λp,n − Xp,n) if χp,n = failure.
(9.1)

Hence,

E[(Λp,n+1−Xp,n+1)
ν ] = (1−p)E[((Λp,n−Xp,n)+R(Xp,n))ν]+pcνE[(Λp,n−Xp,n)ν]. (9.2)

In this section we will use this to obtain crude, but finite, upper bounds for E[(Λp,n −
Xp,n)

ν] in the case ν > 0, as long as E[(R(Xp))
ν] < ∞. Similar results can be obtained

for Yp,n − Xp,n using f(Xp,n), etc.
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Observation: Let G and H be any two random variables, and let ν ≥ 0. Let µ > 0.

Then

E[|G + H|ν] = E[|G + H|νχ(|H| ≤ µ|G|)] + E[|G + H|νχ(|H| > µ|G|)] ≤

(1 + µ)νE[|G|νχ(|H| ≤ µ|G|)] +
(

1 +
1

µ

)ν

E[|H|νχ(|H| > µ|G|)] ≤

(1 + µ)νE[|G|ν] +

(

1 + µ

µ

)ν

E[|H|ν]. (9.3)

We apply this result to (9.2) with ν ≥ 0 and obtain

E[(Λp,n+1 − Xp,n+1)
ν] ≤

((1 − p)(1 + µ)ν + pcν)E[(Λp,n − Xp,n)
ν] + (1 − p)

(

1 + µ

µ

)ν

E[(R(Xp,n)
ν ]. (9.4)

We now choose Xp,n to have the stationary distribution, so that E[(R(Xp,n))
ν] =

E[(R(Xp))
ν] for all n. We choose ν > 0 and choose µ > 0 such, that (1−p)(1+µ)ν+pcν < 1

(that is clearly possible). If now for some n

E[(Λp,n − Xp,n)
ν] ≤

(1 − p)
(

1+µ

µ

)ν

1 − ((1 − p)(1 + µ)ν + pc)ν)
E[(R(Xp))

ν] (9.5)

then (9.5) holds for all m ≥ n. Hence, if E[(R(Xp))
ν] < ∞ and E[(Λp,0 − Xp,0)

ν] < ∞
then

lim sup
n→∞

E[(Λp,n − Xp,n)
ν] ≤

(1 − p)
(

1+µ

µ

)ν

1 − ((1 − p)(1 + µ)ν + pcν)
E[(R(Xp))

ν] < ∞. (9.6)

It is easily seen that if ν > 0 and 0 < p ≤ p(ν|α|) then E[(R(Xp))
ν] < ∞ (see e.g. the

next section) and the results above are applicable.

This section gives very coarse upper bounds to moments of interest, little more that

proofs of finiteness. Once finiteness has been established the argument at the end of

Section 7 becomes valid, and Sections 10 and 12 give much sharper upper bounds.
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10 The proof of Lemma 5

Throughout this Section we have α ≤ 0. For E[f(Xp)] we have (χ(.) stands for the

indicator function)

E[f(Xp)] = c(α)p2E[
1

Xp

χ(Xp ≥
p

1 + |α|)] + d(α)p1+|α|E[
1

X
|α|
p

χ(Xp <
p

1 + |α|)]. (10.1)

If α ≤ −1 this is enough to prove the actual goal, (4.27). If −1 < α < 0 one more

trick is needed to first prove Lemma 5:

Since Xp can be written as in (4.2), and 0 < c < 1, Xp < p implies that Gp,0 = 0.

That event has probability p. The conditional distribution of Xp given that Gp,0 = 0 is

the same as the unconditional distribution of cXp . Hence, if A > 1 and −∞ < ν < +∞

E[Xν
p χ(Xp <

p

A
)] = pcνE[Xν

p χ(Xp <
p

cA
)]. (10.2)

Thus:

E[f(Xp)] = p2

(

c(α)E[
1

Xp

χ(Xp ≥
p

1 + |α|)] + (
p

c
)|α|d(α)E[

1

X
|α|
p

χ(Xp <
p

c(1 + |α|))]
)

.

(10.3)

This proves Lemma 5 and thus (4.27).

This completes the proofs of the results in the Sections 4 and 5.

11 Stationary Distributions and the Main Results

Let FVp(.) be a stationary distribution function for the process Vp,n (with FVp(0) = 0) and

let Vp,0 have that distribution. Choose Xp,0 = Vp,0, and if α ≤ 0 also choose Xp,0 = Yp,0 =

Vp,0 = Λ
(k)
p,0 for all k ≥ 0. In the latter case we now have that for all n

Xp,n = Λ(0)
p,n ≤ Λ(2)

p,n ≤ Λ(4)
p,n ≤ · · · ≤ Vp,n ≤ · · · ≤ Λ(5)

p,n ≤ Λ(3)
p,n ≤ Λ(1)

p,n = Λp,n ≤ Yp,n. (11.1)
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By letting n → ∞ and using the results from previous sections we now get, in the case

α ≤ 0, a result stronger than Theorem 1:

Theorem 5:

If α ≤ 0 then for all p ≤ min(p(1), p(|α|)) there exists a stationary distribution of the

the process (Xp,n, Vp,n, Λp,n, Yp,n) as in Section 8, and if (Xp, Vp, Λp, Yp) have such a joint

stationary distribution then they have a joint distribution with the random variable Z

where also (Xp, Z) have the joint distribution as in Lemma 3, P{Xp ≤ Vp ≤ Λp ≤ Yp} = 1,

and

E[|Vp − Xp|] = E[Vp − Xp] ≤ E[Yp − Xp] ≤ pD(α). (11.2)

To prove theorem 2 (with C = 0) we need to strengthen (11.2). In the next section

we will prove that in the situation of Theorem 5, for every k ∈ {1, 2, · · ·} there exists a

Dk(α) < ∞ such, that

E[|Yp − Xp|k] = E[(Yp − Xp)
k] ≤ pkDk(α) for 0 < p ≤ min(p(k), p(k|α|)). (11.3)

In the case 0 < α < 1 we have a similar result:

Theorem 6:

If 0 ≤ α < 1 then

E[|Xp − Vp|] = E[Xp − Vp] ≤
pα| log c|

(1 − c)(1 − α)
, (11.4)

and similar result can easily be derived for E[|Z − Vp|] = E[Z − Vp].

The proof starts the same way (give Vp the stationary distribution) but then uses a

different approach, see Section 14. The result for higher moments that completes the

proof of Theorem 3 will be given in Section 15
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12 Higher Moments if α ≤ 0

In this section we prove the “higher moments” version of theorem 3. For every k ∈
{1, 2, · · ·} we choose ck(α) ≥ c(α) and define

fk,p,α(x) =











ck(α)p2

x
if ck−1p

1+|α|
≤ x < ∞,

d(α)p1+|α|

x|α| if 0 < x < ck−1p

1+|α|
.

(12.1)

(d(α) need not change.) The only constraint on ck(α) is that

fk,p,α(x) ≥ fp,α(x) ≥ Rp,α(x) for all x > 0. (12.2)

Clearly, it is easy to find such ck(α). As long as this does not lead to confusion we write

fk(.) for fk,p,α(.).

Next we define the process (Yk,p,n)
∞
n=0 by

Yk,p,n+1 =











Yk,p,n + p + fk(Xp,n) if χp,n = success,

cYk,p,n if χp,n = failure,
(12.3)

with Xp,0 ≤ Yp,0 ≤ Yk,p,0. Clearly, then Xp,n ≤ Yp,n ≤ Yk,p,n for all n ≥ 0. We will prove

that there exist 0 < Dk(α) < ∞ such, that for 0 < p ≤ min(p(k), p(k|α|)) the stationary

distributions satisfy

E[(Yp − Xp)
k] ≤ E[(Yk,p − Xp)

k] ≤ pkDk(α). (12.4)

We write fk(.) for fk,p,α(.).

For E[(fk(Xp))
k] we have (χ(.) stands for the indicator function)

E[(fk(Xp))
k] =

(ck(α))kp2kE[
1

(Xp)k
χ(Xp ≥

ck−1p

1 + |α|)] + (d(α))kpk(1+|α|)E[
1

X
k|α|
p

χ(Xp <
ck−1p

1 + |α|)]. (12.5)
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If α ≤ −1 this result is good enough for our purposes, and in fact it was unnecessary

to introduce the new processes (Yk,p,n)
∞
n=0. If −1 < α < 0 another step is needed. By

repeated use of (10.2) we have

E[(fk(Xp))
k] =

p2k

(

(ck(α))kE[
1

(Xp)k
χ(Xp ≥

ck−1p

1 + |α|)] +
(

p

ck

)k|α|

(d(α))kE[
1

X
k|α|
p

χ(Xp <
p

c(1 + |α|))]
)

.

(12.6)

In other words, there is a hk(α) < ∞ for which

E[(fk(Xp))
k] < p2k(hk(α))k (12.7)

if 0 < p ≤ min(p(k), p(k|α|)).

Now we have

Yk,p,n+1 − Xp,n+1 =











(Yk,p,n − Xp,n) + fk(Xp,n) if χp,n = success,

c(Yk,p,n − Xp,n) if χp,n = failure,
(12.8)

Therefore, for the stationary distributions we have

(1 − pck)E[(Yk,p − Xp)
k] = (1 − p)E[((Yk,p − Xp) + fk(Xp))

k]. (12.9)

Using (12.7) and the Minkowski inequality (see e.g. [15]) this gives

(1 − pck)E[(Yk,p − Xp)
k] ≤ (1 − p)

(

(E[(Yk,p − Xp)
k])

1
k + p2hk(α)

)k
(12.10)

if p > 0 is sufficiently close to zero. This implies




(

1 − pck

1 − p

) 1
k

− 1



E[(Yk,p − Xp)
k]

1
k ≤ p2hk(α) (12.11)

for p sufficiently small. This immediately proves that

(E[(Yk,p − Xp)
k])

1
k <

pk

1 − ck
hk(α) (12.12)

if p > 0 is sufficiently close to zero. This completes the proof of (11.3)
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13 The processes Λ(k)
p,n and higher moments

By the same methods as in the previous Section we prove that if all Λ(k)
p have the stationary

distributions of the corresponding processes, and ν is a positive integer then

E[|Λ(k+1)
p − Λ(k)

p |ν] 1
ν ≤ ν

p(1 − cν)
E[|R(Λk

p) − R(Λk−1
p )|ν] 1

ν . (13.1)

Using the monotonicity and convexity of R(.) we obtain

E[|R(Λk
p) − R(Λk−1

p )|ν] ≤ E[|Λk
p − Λk−1

p |ν|R(Xp)|ν] ≤ E[|Λk
p − Λk−1

p |2ν ]
1
2 E[|R′(Xp)|2ν ]

1
2 .

(13.2)

Using the same methods as in the previous Section we prove that if p is sufficiently small

then

E[|R′(Xp)|ν] ≤ p2ν(gν(α))ν, (13.3)

where gν(α) does not depend on p. Hence, for p sufficiently small,

E[|Λ(k+1)
p − Λ(k)

p |ν] 1
ν ≤ νp

1 − cν

√

g2ν(α)E[|Λ(k)
p − Λ(k−1)

p |2ν ]
1
2ν . (13.4)

Continuing this process proves (8.8)

14 The case 0 ≤ α < 1: LP and Duality

Throughout this section we have 0 ≤ α < 1 and therefore have (7.10):

E[Xp − Vp] = E[|Xp − Vp|] =
1 − p

p(1 − c)
E[|R(Vp)|]. (14.1)

We also have the constraint (5.18):

E[log (1 +
p

(1 − α)Vp

)] =
p| log c|

(1 − p)(1 − α)
. (14.2)
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Thus, we can obtain an upper bound for E[|Xp−Vp|] by solving the “Linear Program-

ming Problem”: Find the supremum Sup for

E[|R(V )|] = E



V + p − V

(

1 +
p

(1 − α)V

)1−α


 (14.3)

where the supremum is taken over all non-negative random variables V for which (14.2)

holds.

In order to create notation similar to that used in say [18] we denote

B =
p| log c|

(1 − p)(1 − α)
. (14.4)

The dual (see e.g. [18]) of the LP above is: Find the infimum Inf for

µ1 + µ2B (14.5)

where the infimum is taken over all multipliers µ1 and µ2 for which, for all 0 < v < ∞,

µ1 + µ2 log (1 +
p

(1 − α)v
) ≥



v + p − v

(

1 +
p

(1 − α)v

)1−α


 . (14.6)

The multipliers µ1 and µ2 are allowed to take on any value (negative, zero, or positive).

µ1 is the multiplier for the constraint “P{0 < V < ∞} = 1”, and µ2 is the multiplier

for the constraint (14.2).

Readers who do not like an LP with “continuous many” primal variables and “con-

tinuous many” dual constraints can take limits with finitely many primal variables and

finitely many dual constraints. (Allow the random variable V to have support only in a

finite number of points vk, πk = P{V = vk} then becomes the primal variable.)

By setting x = p

(1−α)v
we re-write the constraint (14.2) as: for all 0 < x < ∞,

µ1 + µ2 log (1 + x) ≥
(

p

(1 − α)x
+ p − p

(1 − α)x
(1 + x)1−α

)

. (14.7)
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We obtain a dual feasible solution by setting µ1 = 0, µ2 = pα. To prove that for

these values of µ1 and µ2 (14.7) indeed holds for all 0 < x < ∞ takes straightforward

arithmetic.

Thus, we know that

E[|R(Vp)|] ≤ Sup = Inf ≤ µ2B =
p2α| log c|

(1 − p)(1 − α)
, (14.8)

or

E[|Xp − Vp|] ≤
pα| log c|

(1 − c)(1 − α)
. (14.9)

15 The LP approach with higher moments

We would of course like to use the LP approach of the previous section also for higher

moments of (Xp − Vp) in the situation 0 ≤ α < 1. This attempt does lead to a result, but

a weaker result than Theorem 2.

In case of higher moments (ν-th moment, with ν > 1) we first want to find the

supremum for

E

[(

V + p − V (1 +
p

(1 − α)V
)1−α

)ν]

(15.1)

subject to the constraint that V is a non-negative random variable with

E

[

log (1 +
p

(1 − α)V
)

]

=
p| log c|

(1 − p)(1 − α)
. (15.2)

As before the RHS in (15.2) is denoted as B.

The dual of this LP is: Find the infimum for

µ1 + µ2B (15.3)

subject to

µ1 + µ2 log (1 +
p

(1 − α)u
) ≥

(

u + p − u(1 +
p

(1 − α)u
)1−α

)ν

(15.4)
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for all 0 < u < ∞.

To construct a dual feasible solution we choose µ1 = 0,

µ2 = sup
0<u<∞

(

u + p − u(1 + p

(1−α)u
)1−α

)ν

log (1 + p

(1−α)u
)

. (15.5)

For u ↓ 0 the RHS in (15.5) goes to zero. To study other values of u we substitute

p

(1−α)u
= x, u = p

(1−α)x
. (15.5) now becomes

µ2 =
pν

(1 − α)ν
sup

0<x<∞

(1 + (1 − α)x − (1 + x)1−α)
ν

xν log (1 + x)
. (15.6)

We define

Mν =
1

(1 − α)ν+1
sup

0<x<∞

(1 + (1 − α)x − (1 + x)1−α)
ν

xν log (1 + x)
. (15.7)

For x ↓ 0 the RHS in (15.7) behaves like some constant times xν−1. Hence, the sup in

(15.7) is a max and is positive, finite. It depends on α and ν but is independent of p and

c. We now have

E[|R(Vp)|ν] ≤ Sup = Inf ≤ pν+1

1 − p
| log c|Mν (15.8)

for all 0 < p < 1.

Unfortunately, the RHS in (15.8) behaves like pν+1, not the p2ν we had in (12.7). (In

(12.7) ν > 1 had to be integer, ν = k ≥ 2). Proceeding as in (12.8) etc (where ν = k ≥ 2

must be integer) we now only get that if 0 < α < 1 then for every integer k ≥ 2 and every

0 < p < 1

E

[

(Xp − Vp)
k

p

]

= E

[

|Xp − Vp|k
p

]

<
kk| log c|Mk

(1 − p)(1 − ck)k
(15.9)

The case C = 0 of Theorem 3 now easily follows.
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16 Results for C > 0

In most of the previous sections we studied processes Vp,n, i.e. α < β = 1, 0 < c2 <

1, C = 0. In this section we deal with the case C > 0 and either p ↓ 0 while C > 0,

constant, or C ↓ 0 while p > 0, constant. Similar to V ∗
p,C,n in (1.20) we define the process

(X∗
p,C,n)

∞
n=0 by

X∗
p,C,n+1 =











X∗
p,C,n + p if χp,n = success,

max(cX∗
p,C,n,

pC1−α

(1−α)c1
) if χp,n = failure.

(16.1)

The key result that makes the case C > 0, constant, easy to handle is

Lemma 12: If for some n

Xp,n ≤ X∗
p,C,n ≤ Xp,n +

pC1−α

(1 − α)c1
, (16.2)

then this holds for all k ≥ n. The proof is straightforward and is left as an exercise for

the reader.

Similar to Lemma 1 we have

Lemma 13: If α ≤ 0 and for some k ≥ 0 V ∗
p,C,k ≥ X∗

p,C,k then this holds for all n ≥ k.

If 0 ≤ α < 1 and for some k ≥ 0 V ∗
p,C,k ≤ X∗

p,C,k then this holds for all n ≥ k.

If α = 0 and for some k ≥ 0 V ∗
p,C,k = X∗

p,C,k then this holds for all n ≥ k.

The proof makes use of re–writing (1.20) as

V ∗
p,C,n+1 =











V ∗
p,C,n + p + Rp,α(V ∗

p,C,n) if χp,n = success,

max(cV ∗
p,C,n,

pC1−α

(1−α)c1
) if χp,n = failure,

(16.3)

with Rp,α(.) as in (7.1). The remainder of the proof is left to the reader.

In the case 0 ≤ α < 1 we now are done: In that case R(.) is an increasing function,

hence the joint distribution of Vp, V
∗
p,C, X∗

p,C, Xp is such that
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Vp ≤ V ∗
p,C ≤ X∗

p,C ≤ Xp +
pC1−α

(1 − α)c1

, (16.4)

and we know that while Vp ≤ Xp they are close in the sense of Theorem 6, or in the sense

of the material in Section 15 if that approach is preferred.

If 0 ≤ α < 1 and C ↓ 0 while p > 0 is constant, we see that the distribution of V ∗
p,C

weakly converges (and is stochastically decreasing) to the distribution of Vp. This follows

from the stochastic monotonicity observations in Section 3. We have been unable to prove

similar weak convergence with C ↓ 0, while p > 0 constant for the case α < 0.

In the case α < 0 we define the processes (Λ∗
p,C,n)

∞
n=0 and (Λ∗∗

p,C,n)
∞
n=0 by

Λ∗
p,C,n+1 =











Λ∗
p,C,n + p + Rp,α(X∗

p,C,n) if χp,n = success,

max(cΛ∗
p,C,n,

pC1−α

(1−α)c1
) if χp,n = failure,

(16.5)

Λ∗∗
p,C,n+1 =











Λ∗∗
p,C,n + p + Rp,α(X∗

p,C,n) if χp,n = success,

cΛ∗∗
p,C,n if χp,n = failure.

(16.6)

Henceforth we choose the initial Xp,0 etc such, that the following inequalities hold for all

n, instead of from some k on.

Since X∗
p,n ≤ V ∗

p,n and R(.) is a positive, decreasing function,

X∗
p,C,n ≤ V ∗

p,C,n ≤ Λ∗
p,C,n (16.7)

for all n ≥ 0. Similarly, since also X∗
p,C,n ≥ Xp,n we have

Λ∗∗
p,C,n ≤ Λp,n (16.8)

for all n ≥ 0. By the same argument as (16.4) we have that

Λ∗∗
p,C,n ≤ Λ∗

p,C,n ≤ Λ∗∗
p,C,n +

pC1−α

(1 − α)c1
(16.9)
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for all n ≥ 0. For the joint stationary distribution we therefore have

Xp ≤ X∗
p,C ≤ V ∗

p,C ≤ Λ∗
p,C ≤ Λ∗∗

p,C +
pC1−α

(1 − α)c1

≤ Λp +
pC1−α

(1 − α)c1

. (16.10)

Since we know that Λp − Xp is non–negative, and small in the sense of Theorem 5, we

have proven the desired result for first moments. For higher moments we do not need to

call on functions similar to fk,p,α(.) but can directly call on results for the higher moments

of Λp − Xp.

The approach above shows that for C > 0 V ∗
p,C etc have all moments: Rp,α(X∗

p,C) ≤
Rp,α( pC1−α

(1−α)c1
) < ∞, etc.

We see that if α < 0 and 0 < p ≤ min(p(k), p(k|α|)) and C ↓ 0 (with p constant), then

all moments E[(V ∗
p,C)ν] (0 ≤ ν ≤ k) remain bounded between E[Xν

p ] and

E[(Λp + pC1−α

(1−α)c1
)ν] < ∞. There is no guarantee that for C ↓ 0 these moments converge. It

is conceivable that the set of limitpoints is some nontrivial subset of [E[Xν
p ], E[Λν

p]].

17 The special case α = −1

The case α = −1 is special for several reasons. It is of particular interest, because it

represents the “Classical TCP” situation. It also allows a significantly simplified proof.

If α = −1, R(v) = p2

4v
, which already is of the right form, so we choose f(v) = R(v),

so that Yp = Λp as in Section 8. Hence,

0 < E[Λp − Xp] =
p(1 − p)

4(1 − c)
E[

1

Xp

], (17.1)

where of course c = b1−α = b2. From Lemma 6 (etc) (which still is needed) we know that

lim
p↓0

E[
1

Xp

] = E[
1

Z
] = log (

1

c
) = 2 log (

1

b
). (17.2)

In the case of TCP, b = 1
2
.
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A Appendix, the behavior of E[R(Xp)] etc

It is well known that

(1 + x)1−α =
n
∑

k=0







1 − α

k





xk +







1 − α

n + 1







∫ x

0

(n + 1)(x − u)n

(1 + u)n+α
du (A .1)

If n ≥ −α, for example, as in our situation, α ≤ 0 and n ≥ |α|, and if also x ≥ 0, the

absolute value of the rest-term in (A .1) is less than

∣

∣

∣

∣

∣

∣

∣







1 − α

n + 1







∣

∣

∣

∣

∣

∣

∣

xn+1. (A .2)

Using this in the expression for R(v), setting v = Xp and taking expected values yields:

If α < 0 and n ≥ max(|α|, 2) and 0 < p ≤ p(n) then

∣

∣

∣

∣

∣

∣

∣

E[R(Xp)] −
n
∑

k=2







1 − α

k





 (
p

1 − α
)kE[X−(k−1)

p ]

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣







1 − α

n + 1





 (
p

1 − α
)n+1E[X−n

p ]

∣

∣

∣

∣

∣

∣

∣

< ∞. (A .3)

With Lemma 6 and its corollary, and using (1.15) and the fact that

0 < E[(Xp)
−1] − E[Z−1] = O(p) (p ↓ 0) we obtain: If α < 0 then

∣

∣

∣

∣

∣

1

p2
E[R(Xp)] −

|α|| log c|
2(1 + |α|)

∣

∣

∣

∣

∣

= O(p) (p ↓ 0). (A .4)

For d
dv

R(v) we have

R′(v) = (1 +
pα

(1 − α)v
)(1 +

p

(1 − α)v
)−α − 1 (A .5)
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and in the same way as the result above we obtain for the derivative R′(.) of R(.) that if

α < 0 then

∣

∣

∣

∣

∣

1

p2
E[R′(Xp)] +

|α|(1 − c)| log c|
2(1 + |α|)c

∣

∣

∣

∣

∣

= O(p) (p ↓ 0). (A .6)

Similar results can be obtained for higher moments and higher derivatives. Such results

could be used to rewrite some of the results in this paper.
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