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Abstract

This note derives the transient behavior of the stochastic process X(t) of which

in earlier papers it was proven that for α < 1 the process (X(t))
1

1−α (approximately,

under low drop probability or ECN marking probability) describes the behavior

of the congestion windows in certain Transport Protocols in the so–called TCP

Paradigm.

The transient distribution is found explicitly, and is particularly transparent for

moments like E[(X(t))k |X(0)]. The purpose of this paper is to be part of the math-

ematical foundation when comparing the many protocols in the TCP Paradigm.
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1 Introduction

In this paper we study the process (X(t))−∞<t<+∞ obtained as follows: There is a Poisson

Process with intensity λ of which the points are denoted by (τk)
+∞
k=−∞, and there is a

number 0 < c < 1. In between the points τk the process X(.) behaves as

d

dt
X(t) = 1, (1.1)

and in the points τk we have

X(τ+
k ) = cX(τ−k ). (1.2)

If λ = 1 we denote this process by X∗(t).

Our interest in this process is due to its connection with existing and proposed Inter-

net Transport Protocols. In [3] and [4] we proposed a class of potential such transport

protocols, and made a first attempt to identify the more promising protocols in that class.

The class contains classical TCP as well as Tom Kelly’s Scalable TCP, see [10] and [11].

If the parameter β in that class of protocols is chosen equal to one, and the drop

probability p or ECN marking probability p is assumed to be constant, the protocols just

referred to lead to the discrete time stochastic process (Wn)∞n=0 as follows:

Let (Un)∞n=0 be independent, identically distributed random variables, each distributed

uniformly [0, 1]. Let p be a probability, 0 < p < 1. Define the i.i.d. random variables χp,n

by

χp,n =











success if Un ≥ p

failure if Un < p
(1.3)

The process Wp,n then is defined by

Wp,n+1 =











Wp,n + c1(Wp,n)
α if χp,n = success,

max(bWp,n, ℓ) if χp,n = failure,
(1.4)
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where α < 1, c1 > 0, 0 < b < 1, ℓ ≥ 0. In classical TCP, α = −1, c1 = 1, b = 1
2
.

In Scalable TCP, α = 0. In various versions of TCP ℓ usually is one MSS (Maximum

Segment Size, i.e. maximum data size of a TCP packet) or a few MSSs. p of course

stands for the probability that a packet will be lost, or possibly marked in the Explicit

Congestion Notification (ECN) mechanism. See [39, 40, 41] for a description of ECN.

In the limit for p ↓ 0 the value of ℓ is not relevant, as long as it is constant.

Wp,n stands for the congestion window after the n-th successful (or un–marked) ac-

knowledgement.

The purpose of this paper is to be part of the mathematical foundation for a com-

parison of the many protocols in the TCP Paradigm. This includes finding the better

combinations of α < 1 and 0 < c < 1, but also includes study of desirable values of the

“Slow Start Threshold” parameter. Such a study must also include the effects of a delay

of 1 RTT in the feedback. A start on the latter is made in [8].

[6] and [7] prove stationarity of the process Wp,n. Curiously, if (ℓ = 0 and α < 0)

uniqueness of the stationary distribution has not been proven (yet?).

[6] proves that if (ℓ = 0 and α < 0) then for this stationary distribution E[(Wp)
r] <∞

if − | log (p)|
| log (b)|

< r < | log (p)|
|α log (b)|

, else is infinite, while if (ℓ = 0 and 0 ≤ α < 1) E[(Wp)
r] <∞ as

long as − | log (p)|
| log (b)|

< r < ∞, else is infinite. The same methods can be used to prove that

if ℓ > 0 then E[(Wp)
r] <∞ for all values of r, regardless of the value of α < 1.

[3] and [4] conjecture that for p ↓ 0 the process p
c1(1−α)

(Wp,⌊ t
p
⌋)

1−α converges weakly

to the process X∗(t) with c = b1−α, and that the stationary distributions correspondingly

converge to the stationary distributions of the limiting process X∗(.). In fact, [2], while

not formulating the conjectures, uses them without proof.

These conjectures were proven in [7]. In addition, [5] obtains rate of convergence

results for the convergence of the stationary distributions to the stationary distribution
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of the limiting process X∗(.), see also below.

The stationary distribution of the process X(.) was established in [2]. For example, if

Z has that stationary distribution it has the form

Z =
∞
∑

k=0

ckEk, (1.5)

where (Ek)
∞
k=0 are independent, identically distributed random variables, all exponentially

distributed with parameter λ, and for all (even complex) r,

M(r) = E[Zr] = λ−rΓ(r + 1)
∞
∏

k=1

(1 − cr+k)

(1 − ck)
. (1.6)

If r is a real integer this expression simplifies, see [2]. If λ = 1 we denote Z by Z∗ and

M(r) by M∗(r).

In [5] it was investigated under what circumstances for the stationary distributions

lim
p↓0

E

[(

p

c1(1 − α)
(Wp)

1−α

)r]

= M∗(r). (1.7)

It was proven that if (ℓ = 0 and α ≤ 0) then (1.7) holds for all −∞ < r < +∞. If

(ℓ = 0 and 0 < α < 1) (1.7) was proven to hold for all r ≥ 0. There is little doubt it also

holds for r < 0. The same methods can be used to prove that if ℓ > 0 then (1.7) holds

for all −∞ < r < +∞, regardless of the value of α. [5] also contains rate of convergence

results for (1.7).

In this paper we will obtain the transient behavior of the process (X(.)), and thus

for p small the approximate transient behavior of the congestion window in Transport

Protocols in the proposed class.

Mathematical analysis of TCP and TCP–like protocols has been an active area of

research since 1996. [1] by now is of mostly historical interest. In addition to the ones

already mentioned, notable papers are [9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
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24, 25, 26, 27, 28, 29, 30]. Of these, [30] contains an excellent review of the literature up

to about 2004. [9] studies the transient behavior of a generalization of the process X(t)

where Qk =
X(τ+

k
)

X(τ−
k

)
is random instead of deterministic, see also the remark following (3.10).

[7], while mostly a mathematical paper on the weak convergence issues for p ↓ 0,

contains some more information on the recent literature. In addition to the papers just

mentioned, pride of ownership compels us to mention [31, 32, 33, 34, 35, 36, 37, 38].

It must be noted that the “time” used in this paper is packet–time, i.e. time is counted

in data packets sent (or acknowledgements received). Several other papers studying Pro-

tocols in the TCP Paradigm use “clock–time”, where time typically is counted in Round

Trip Times (RTTs). If packet–time is denoted as tP and clock–time is denoted as tC we

have

dtP = WdtC , (1.8)

where W is the congestion window (in MSSs) at time tP (time tC). The “packet–time

stationary distribution” and the ”clock–time stationary distribution” are of course not the

same (in packet–time we sample faster when the congestion window is larger). [2] gives the

relationship between the two stationary distributions: If WP and WC have respectively

the “packet–time” stationary distribution and the “clock–time” stationary distribution

then

dP{WP ≤ w} =
wdP{WC ≤ w}

E[WC ]
, dP{WC ≤ w} =

dP{WP ≤ w}

wE[ 1
WP

]
. (1.9)

Use of Clock Time with a constant (independent of the current Window Size) “prob-

ability per RTT” (e.g. “hazard rate”) of a drop event leads to an interesting modeling

issue: Implicitly it assumes a probability of drop per packet which is inversely propor-

tional to the current window size W . This means that two or more TCP flows between

the same source–destination pairs most of the time are assumed to have different drop

probabilities per packet.
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The model described thus far assumes that the congestion window is the only con-

straint on the amount of data “in flight” (data sent but no acknowledgement received yet

by the sender), that the congestion window is expressed in MSSs, that (practically) all

datapackets contain one MSS worth of data, and that every individual data packet causes

an acknowledgement to be sent. (No delayed acknowledgements.)

If desired, delayed acknowledgements can easily be incorporated into the model.

(1.8) indicates that we assume that the actual time (clock–time) between acknowl-

edgement n and acknowledgement n + 1 can (away from error recovery etc) be assumed

to be equal to 1
Wp,n

of an RTT. To send N packets, numbered k+1, k+2, · · · , k+N takes

(assuming only a negligible amount of time is spent in Time–Outs and Recovery) about

1

Wp,k
+

1

Wp,k+1
+ · · · +

1

Wp,k+N−1
RTTs. (1.10)

(1.10) is of course a decent approximation only if N is large. N should be large compared

with maxk≤j≤k+N Wp,j.

We can condition on Wp.k = w and take expected values. Thus we get that the

expected amount of time to move MSSs k+1, · · · , k+N given Wp,k = w is approximately

E

[

1

Wp,k
+ · · · +

1

Wp,k+N−1

∣

∣

∣

∣

∣

Wp.k = w

]

RTTs. (1.11)

Using the weak convergence results stated above, we see that with

ρ =
1

1 − α
, x =

pw1−α

c1(1 − α)
(1.12)

the expected duration in (1.11) for p small is approximately equal to

p
α

1−α

(c1(1 − α))ρ
E

[

∫ p(k+N)

pk

dt

(X∗(t))ρ

∣

∣

∣

∣

∣

X∗(pk) = x

]

. (1.13)

For interesting results we should have that pN is at least Ω(1). For a good understand-

ing of (1.13) it is important to remember that for fixed N (residual number of packets)

pN goes to zero when p goes to zero.
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(1.13) also proves, again, a result known since 1996: the expected long range through-

put for a large file, with p small, should be approximately

(

c1(1 − α)

p

)ρ
(

E[(Z∗)−ρ]
)−1

MSSs/RTT, (1.14)

where Z∗ has the stationary distribution of the process X∗(.). (1.6) thus can be used

to compute the expected long range throughput. This results holds of course only if the

assumptions of the model hold. For example, a home–user with a DSL modem will never

get a throughput higher than the DSL link allows. Also, when there is a limit on the

“flightsize” (e.g. receive window or send window) this leads to limits on the achievable

throughput. On the other hand, (1.14) does not require that RTTs are constant.

This paper will not directly derive explicit expressions for entities like (1.13). It will

derive explicit expressions for many transient entities such as E[(X(t))k|X(0) = x] and

for entities like

∫ ∞

0
(E[(X(t))r|X(0) = x1] −E[(X(t))r|X(0) = x2])dt, (1.15)

∫ ∞

0
(E[(X(t))r|X(0) = x] − E[(X(t))r|X(0) = Z])dt, (1.16)

where of course Z has the stationary distribution as in (1.5) and is independent of the

Poisson Process (τk), so that for all t ≥ 0 (X(t)|X(0) = Z) has that stationary distribu-

tion, and for

d

dx

∫ ∞

0
(E[(X(t))r|X(0) = x] − E[(X(t))r|X(0) = x0])dt. (1.17)

In the sections (3) – (7) the integrals (1.15), (1.16), (1.17) will be re–defined as ex-

pected values of certain stochastic integrals. In the notation of those sections, (1.15) is

denoted as D(x1, x2, r, 0), (1.16) is denoted as D(x1, Z, r, 0) and (1.17) will be denoted as

d
dx
D(x, x0, r, 0). There will be a fourth parameter (β), which is important in the deriva-

tions and which is zero in (1.15), (1.16), (1.17).
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With ρ = 1
1−α

, p
α

1−α

(c1(1−α))ρD(x1, x2,−ρ, 0) is the expected difference in duration until

completion, in RTTs, for a (very) large file, between starting with an initial window

w1 =
(

c1(1−α)x1

p

)ρ
and starting with an initial window w2 =

(

c1(1−α)x2

p

)ρ
. Similarly,

p
α

1−α

(c1(1−α))ρD(x, Z,−ρ, 0) describes the difference in expected duration for a large file, be-

tween starting with a window w =
(

c1(1−α)x
p

)ρ
and starting with a window in the stationary

distribution. Since −ρ < 0, D(x, Z,−ρ, 0) → −∞ if x→ ∞.

(1.17) similarly describes the marginal expected advantage, for ftping a very large file,

of starting with a slightly larger congestion window.

For a large file consisting of N packets (MSSs), if we start with the window in the sta-

tionary distribution, the expected time until completion is N
(

p
c1(1−α)

)ρ
E[(Z∗)−ρ] RTTs.

If we start with a window w =
(

c1(1−α)x
p

)ρ
the expected duration therefore will approxi-

mately be

N

(

p

c1(1 − α)

)ρ

E[(Z∗)−ρ] +
p

α
1−α

(c1(1 − α))ρ
D(x, Z,−ρ, 0) (1.18)

RTTs. For p (small, fixed) and x fixed (1.18) becomes accurate if N → ∞. If x is of the

order of E[Z∗] it probably is enough that N is large compared with 1
p(1−c)

. If x is larger

it probably is enough that N is large compared with 1
p

(

1
1−c

+ log (x)
| log (c)|

)

. These, and many

others, are issues to be studied in a more engineering oriented paper.

The above may be useful, for example, in protocols using a “slow start - like” mecha-

nisms, in choosing the analog of a “slow start threshold” parameter value.

Results will be obtained by two different methods: “elementary” methods and methods

based on Laplace Transform techniques.

Section 2 contains some preliminaries. The next five Sections, 3 – 7, use only ele-

mentary techniques to obtain results for various moments and related entities. Laplace

Transform methods will be introduced in Section 8. Real domain results for transient

densities of (X(t)|X(0) = x) will be given in Section 9. Their proofs depend on Laplace
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Transforms from Section 8. Section 10 contains results for moments that could not be

obtained by elementary methods but require the results from Section 9.

Appendix A contains some results on special functions that will be used throughout

this paper.

Appendix B derives a result needed in Section 10.

2 Preliminaries

Let N(t) be the number of points of the Poisson Process in the time interval (0, t]. It is

well known that

P{N(t) = k} =
(λt)k

k!
e−λt. (2.1)

One of the main objectives of this paper is to derive the joint distribution of (N(t), X(t))

given X(0) = x.

A special role is played by the process X(t) with X(0) = 0. We denote this process by

Y (t), and use the process Y (t) to study the process X(t), with of course the understanding

that both processes are generated by the identical sequence (τk). With this understanding,

we have the identity

X(t) = (Y (t) + cN(t)X(0)), (2.2)

which we often write as

X(t) =
∞
∑

k=0

(Y (t) + ckX(0))χ(N(t) = k). (2.3)

It must be kept in mind that Y (t) and N(t) are (very!) dependent on each other, but of

course independent of X(0).

It is useful to observe that

tcN(t) ≤ Y (t) ≤ t, (t+ x)cN(t) ≤ Y (t) + xcN(t) ≤ t+ xcN(t) ≤ t+ x (2.4)
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for all t ≥ 0, x ≥ 0. This implies that for all −∞ < β < +∞

tre−λt(1−cβ+r) ≤ E[(Y (t))rcβN(t)] ≤ tre−λt(1−cβ) (2.5)

as long as r ≥ 0 and

tre−λt(1−cβ) ≤ E[(Y (t))rcβN(t)] ≤ tre−λt(1−cβ+r) (2.6)

as long as r ≤ 0. It also shows that with probability 1 for every 0 < ǫ < ∞ and

−∞ < β < +∞
∫ ǫ

0
(Y (t))rcβN(t)dt











<∞ if r > −1

= ∞ if r ≤ −1,
(2.7)

while as long as x > 0 the similar integrals for (Y (t) + xcN(t))rcβN(t) exist and are finite

for all r, even complex r. Similar results hold for the integrals of E[(Y (t))rcβN(t)] and

E[(Y (t) + xcN(t))rcβN(t)].

In Section 8 we will study transforms like

ψ(x, t, s, z) = E[exp{−s(Y (t) + xcN(t))}zN(t)]. (2.8)

Often, we write z as cβ. In Section 9 we will use those transforms to obtain real domain

information about transient densities. Before we proceed to transform techniques we

restrict ourselves in the next five sections to elementary (real–domain) methods.

3 Elementary methods for expected values

A useful observation is that for any r, β,

d

dt
E[(X(t))rcβN(t)] = rE[(X(t))r−1cβN(t)] − λ(1 − cr+β)E[(X(t))rcβN(t)]. (3.1)

For r = 1 this reduces to

d

dt
E[X(t)cβN(t)] = e−λt(1−cβ) − λ(1 − c1+β)E[X(t)cβN(t)], (3.2)
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which yields

E[X(t)cβN(t)] =

(

X(0) −
1

λcβ(1 − c)

)

e−λt(1−c1+β ) +
e−λt(1−cβ)

λcβ(1 − c)
. (3.3)

(3.1) with r = 2 and (3.3) show that

E[(X(t))2cβN(t)] =

2

λ2c2β(1 − c)(1 − c2)
exp{−λt(1 − cβ}+

2

λc1+β(1 − c)

(

E[X(0)] −
1

λcβ(1 − c)

)

exp{−λt(1 − c1+β)}+

(

E[(X(0))2 −
2E[X(0)]

λc1+β(1 − c)
+

2

λ2c1+2β(1 − c)(1 − c2)

)

exp{−λt(1 − c2+β)}. (3.4)

We easily see that in general, for k a positive integer,

E[(X(t))kcβN(t)] =
k
∑

j=0

Cj,k exp{−λt(1 − cj+β)}, (3.5)

where

C0,0 = 1,

Cj,k =
k!

j!λk−jc(k−j)(j+β)(1 − c)(1 − c2) · · · (1 − ck−j)
Cj,j if 0 ≤ j ≤ k, (3.6)

(which if j = k is a trivial identity), and

k
∑

j=0

Cj,k =
k
∑

j=0

k!

j!λk−jc(k−j)(j+β)(1 − c)(1 − c2) · · · (1 − ck−j)
Cj,j = E[(X(0))k]. (3.7)

We can re–write (3.7) as

k
∑

j=0

1

c(k−j)j(1 − c) · · · (1 − ck−j)

(λcβ)jCj,j

j!
=

(λcβ)kE[(X(0))k]

k!
(3.8)

to make it more obvious what infinite triangular matrix to invert. Using (3.8) and (3.6)

we obtain

(λcβ)kCk,k

k!
=

k
∑

j=0

(−1)k−j

cj(k−j)+
(k−j)(k−j−1)

2 (1 − c)(1 − c2) · · · (1 − ck−j)

(λcβ)jE[(X(0))j]

j!
=

11



k
∑

j=0

(−1)j

cj(k−j)+
j(j−1)

2 (1 − c)(1 − c2) · · · (1 − cj)

(λcβ)k−jE[(X(0))k−j]

(k − j)!
. (3.9)

The proof of (3.9) amounts to inverting an infinite triangular matrix and uses (A.6)

(with µ = k − 1) in Appendix A.

Substituting (3.9) into (3.6) and the results into (3.5) gives

(λcβ)kE[(X(t))kcβN(t)]

k!
=

k
∑

j=0

(λcβ)jE[(X(0))j]

j!
c−j(k−j)×





k
∑

ν=j

(−1)ν−jc
1
2
(ν−j)(ν−j−1)−(ν−j)(k−j−1) exp{−λt(1 − cν+β)}

(1 − c) · · · (1 − ck−ν).(1 − c) · · · (1 − cν−j)



 . (3.10)

(3.10) in the special case that β = 0 is identical to Theorem 8 in [9] in the special case

(in the language of that paper) that P{Q = c} = 1.

(3.10) makes it easy to verify (again using (A.6)) that for t ↓ 0 it reduces toE[(X(0))k] =

E[(X(0))k].

Using Lemma A.2 in Appendix A, (3.10) can be re-written as

λk

k!
E[(X(t))kcβN(t)] =

e−λt
k
∑

ν=0

λν

ν!
E[(X(0))ν]

∞
∑

µ=0

(λt)µ+k−ν

(µ+ k − ν)!
cµ(ν+β) (1 − cµ+1) · · · (1 − cµ+k−ν)

(1 − c) · · · (1 − ck−ν)
. (3.11)

Using (A.12) we can rewrite (3.11) as

λk

k!
E[(X(t))kcβN(t)] =

e−λt
k
∑

ν=0

λν

ν!
E[(X(0))ν]

∞
∑

µ=0

(λt)µ+k−ν

(µ+ k − ν)!
cµ(ν+β) (1 − ck−ν+1) · · · (1 − ck−ν+µ)

(1 − c) · · · (1 − cµ)
. (3.12)

It sometimes is useful to write (3.12) as

λk

k!
E[(X(t))kcβN(t)] =

12



e−λt
k
∑

ν=0

λν

ν!
E[(X(0))ν ]

∞
∑

µ=0

(λt)µ+k−ν

(µ+ k − ν)!
cµβ (cν − ck+1) · · · (cν − ck+µ)

(1 − c) · · · (1 − cµ)
. (3.13)

In a formal sense we can write (3.13) as

λk

k!
E[(X(t))kcβN(t)] =

e−λt
∞
∑

ν=0

λν

ν!
E[(X(0))ν ]

∞
∑

µ=0

(λt)µ+k−ν

Γ(µ+ k − ν + 1)
cµβ (cν − ck+1) · · · (cν − ck+µ)

(1 − c) · · · (1 − cµ)
. (3.14)

Namely, if ν ≥ k + 1 then 1
Γ(µ+k−ν+1)

= 0 if µ ≤ ν − k − 1 while the product in the

inner sum equals 0 if µ ≥ ν − k. In Section 10 we will see that as long as X(0) ≤ t we

have, for all r, even complex:

λr

Γ(r + 1)
E[(X(t))rcβN(t)] =

e−λt
∞
∑

ν=0

λν

ν!
E[(X(0))ν ]

∞
∑

µ=0

(λt)µ+r−ν

Γ(µ+ r − ν + 1)
cµβ (cν − cr+1) · · · (cν − cr+µ)

(1 − c) · · · (1 − cµ)
. (3.15)

(3.15) converges absolutely as long as X(0) ≤ t. It diverges if P{X(0) > t} > 0.

In the special case that X(0) = 0 (3.10) gives:

(λcβ)kE[(Y (t))kcβN(t)]

k!
=

k
∑

ν=0

(−1)νc
1
2
ν(ν−1)−ν(k−1) exp{−λt(1 − cν+β)}

(1 − c) · · · (1 − cν).(1 − c) · · · (1 − ck−ν)
, (3.16)

and similarly (3.12), or (3.16) with Lemma A2, gives

λk

k!
E[(Y (t))kcβN(t)] = e−λt

∞
∑

µ=0

(λt)µ+k

(µ+ k)!
cµβ (1 − ck+1) · · · (1 − ck+µ)

(1 − c) · · · (1 − cµ)
. (3.17)

In Section 10 we will see that (3.17) can be generalized to the situation where k is not

a non–negative integer. For all r, even complex:

λr

Γ(r + 1)
E[(Y (t))rcβN(t)] = e−λt

∞
∑

µ=0

(λt)µ+r

Γ(µ+ r + 1)
cµβ (1 − cr+1) · · · (1 − cr+µ)

(1 − c) · · · (1 − cµ)
. (3.18)
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We recognize (3.18) as (3.15) with X(0) = 0. In fact, (3.18) will be proven before

(3.15) and is used in the proof of (3.15).

By choosing β = 0 we obtain the behavior of E[(X(t))k] and E[(Y (t))k], and (3.5)

shows that the “Relaxation Time” of the process X(t) is 1
λ(1−c)

: If X(0) is not too large

compared with E[Z], the time it takes for X(t) to “reach the stationary distribution” is

a moderate multiple of 1
λ(1−c)

.

(3.12) and (3.17) show that

λk+1

k!

∫ ∞

0
E
[(

(Y (t) + xcN(t))k − (Y (t))k
)

cβN(t)
]

dt =

k
∑

ν=1

(λx)ν

ν!

∞
∑

µ=0

cµ(ν+β) (1 − ck−ν+1) · · · (1 − ck−ν+µ)

(1 − c) · · · (1 − cµ)
. (3.19)

The integral, and the sum, in (3.19) converge as long as Re(β) > −1. More on

convergence of this kind of integrals will be discussed in Sections 5, 6, 7. Using (A.2)

(which in this case requires Re(β) > −1) we re–write (3.19) as

λk+1

k!

∫ ∞

0
E
[(

(Y (t) + xcN(t))k − (Y (t))k
)

cβN(t)
]

dt =

k
∑

ν=1

(λx)ν

ν!

∞
∏

µ=0

1 − ck+β+1+µ

1 − cν+β+µ
, (3.20)

which since ν ≤ k and both are non–negative integers can be written as

λk+1

k!
E
[∫ ∞

0

(

(Y (t) + xcN(t))k − (Y (t))k
)

cβN(t)dt
]

=

k
∑

ν=1

(λx)ν

ν!

1

(1 − cν+β)(1 − cν+β+1) · · · (1 − ck+β)
. (3.21)

(3.20) and (3.21 are identities as long as Re(β) > −1. If β is real and β ≤ −1

the integrals are infinite but the sums in the RHSs are the analytic continuations of the

expressions for Re(β) > −1. As long as β is real the interchange of expected value and

integration is warranted by Fubini’s theorem (all functions involved are non–negative).
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By using (3.21) twice, with different values of x, we obtain expressions like (1.15),

however, with the constraint that r must be a non–negative integer k. One of our goals

is to generalize (3.21) to general r. It must be noted that in none of the three equations

(3.19), (3.20), (3.21) we can change the upper limit of the sum from k to ∞. Therefore,

to find the entities described in (1.15), we must obtain new methods. This will be done

in Sections 5, 6, 7.

A second useful insight (beyond (3.1)) is that for any r

d

dt
E[(X(t))rχ(N(t) = k)] =

λcrE[(X(t))rχ(N(t) = k − 1)] + rE[(X(t))r−1χ(N(t) = k)] − λE[(X(t))rχ(N(t) = k)].

(3.22)

For k = 0 obviously

E[(X(t))rχ(N(t) = 0)|X(0) = x] = (x+ t)r exp{−λt}. (3.23)

For r = 1 (3.22) reduces to

d

dt
E[X(t)χ(N(t) = k)] =

λcE[X(t)χ(N(t) = k − 1)] + P{N(t) = k} − λE[X(t)χ(N(t) = k)]. (3.24)

This yields

E[X(t)χ(N(t) = k)|X(0) = x] =

(

x
(cλt)k

k!
+

(1 − ck+1)

λ(1 − c)

(λt)k+1

(k + 1)!

)

e−λt. (3.25)

The proofs of the last few statements are left for the reader.

A third potentially useful insight is that for m ∈ {0, 1, 2, · · ·}
(

d

dx

)m

E[(X(t))rcβN(t)|X(0) = x] =

(

d

dx

)m

E[
(

Y (t) + xcN(t)
)r
cβN(t)] =

r(r − 1) · · · (r −m+ 1)E[
(

Y (t) + xcN(t)
)r−m

c(β+m)N(t)]. (3.26)
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4 Stochastic Dominance and Bounds

Let X1(t), X2(t), · · · be processes as in the previous Sections, with identical (Y (t))t≥0 but

different starting values X1(0), X2(0), · · ·, with of course (X1(0), X2(0), · · ·) independent

of (Y (t))t≥0. By (2.2), if X1(0) is (stochastically) less than X2(0) then, for all t ≥ 0, X1(t)

is (stochastically) less than X2(t).

Similarly, if X3(0) has the distribution of Z in (1.5) then for all t ≥ 0 X3(t) =

Y (t) +X3(0)cN(t) also has the distribution of Z.

Hence, if also X1(0) is stochastically less than X3(0) = Z, and Z is stochastically less

than X2(0), then for all t ≥ 0 X1(t) = Y (t)+X1(0)cN(t) is stochastically less than Z, and

Z is stochastically less than X2(t) = Y (t) +X2(0)cN(t).

We conjecture that in this case actually X1(t) = Y (t) + X1(0)cN(t) is stochastically

increasing in t, and X2(t) = Y (t) + X2(0)cN(t) is stochastically decreasing in t, in both

cases of course with the distribution of Z as limit distribution (for t ↑ ∞). Thus far we

have been unable to prove this conjecture.

However, the following is enough for the needs of this paper:

Lemma 1 (Y (t))t≥0 is stochastically increasing in t, with for limit distribution (t ↑ ∞)

the distribution of Z.

Proof: Let 0 < t1 < t2. Then

Y (t2) = Z(t2 − t1) + Y (t1)c
N(t2)−N(t1) > Z(t2 − t1), (4.1)

where Z(t2 − t1) has the same distribution as Y (t2 − t1). Hence, Y (t2) is stochastically

larger than Y (t2 − t1) for all 0 < t1 < t2. This proves the lemma.

Clearly, if r > 0 then E[(Y (t))r] increases from 0 at t = 0 to M(r) at t = ∞, and if

r < 0 then E[(Y (t))r] decreases from +∞ at t = 0 toM(r) at t = ∞. More quantitatively:
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If r ≥ 0 then

tre−λt(1−cr) ≤ E[(Y (t)r] ≤ min(M(r), tr) (4.2)

while if r ≤ 0

max(M(r), tr) ≤ E[(Y (t))r] ≤ treλt(cr−1). (4.3)

and in both cases

lim
t→∞

E[(Y (t))r] = M(r). (4.4)

For the next result we need an intermediate step:

Observation If U and V are non–negative random variables and η > 0, r ≥ 0, then

E[(U + V )r] = E[(U + V )rχ(V < ηU)] + E[(U + V )rχ(U ≤
1

η
V )] ≤

(1 + η)rE[U r] + (
1 + η

η
)rE[V r]. (4.5)

The result still holds if r ≤ 0. (The proof requires a trivial modification.) However, in

that case it is not of much use in the following:

Lemma 2 Let X(0) be random (non-negative), independent of (Y (t))t≥0. If now r ≥ 0

then for all η(t) > 0

max(E[(Y (t))r], E[(X(0))r]e−λt(1−cr)) ≤ E[(Y (t) +X(0)cN(t))r] ≤

(1 + η(t))r(E[(Y (t))r] + (
1 + η(t)

η(t)
)rE[(X(0))r]e−λt(1−cr)), (4.6)

while if r ≤ 0 then

E[(Y (t) +X(0)cN(t))r] ≤ min(E[(Y (t))r], E[(X(0))r]eλt(cr−1)). (4.7)

In (4.6) we can choose (for example) η(t) = e−
λt
2r

(1−cr) to get a bound on how fast

E[(Y (t) +X(0)cN(t))r] approaches E[(Y (t))r] if t → ∞. By substituting (4.2), (4.3) into

(4.6), (4.7) and using (4.4) we easily prove
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Theorem 1A For all 0 < ǫ <∞, 0 ≤ x <∞,−∞ < r < +∞, the integral

∫ ∞

ǫ
(Y (t) + xcN(t))rcβN(t)dt (4.8)

is finite with probability 1, and has finite expected value, as long as β > 0. If β ≤ 0 the

integral, with probability 1, is infinite.

Clearly, in Theorem 1A we can allow β, r to be complex valued. If Re(β) > 0 then for

all r the integral converges with probability one, and has a well defined expected value.

If Re(β) ≤ 0 then for all r the integral does not converge.

Theorem 1B Unless (x = 0 and Re(r) ≤ −1) the integral

∫ ǫ

0
(Y (t) + xcN(t))rcβN(t)dt (4.9)

(0 < ǫ <∞, 0 ≤ x <∞,−∞ < r < +∞,−∞ < β < +∞) is finite with probability 1 and

has finite expected value. If simultaneously x = 0 and Re(r) ≤ −1 the integral diverges

with probability 1. (See also (2.7).)

Proof: Considering the results earlier in this section, the only statement which still

needs proof is that if β is real and β ≤ 0 the integral in (4.8) is infinite with probability

one. Because of the construction of the process (X(t)) convergence of the integral (4.8)

requires that limt→∞(X(t))rcβN(t) = 0. This clearly has probability zero if Re(β) ≤ 0.

Paraphrasing Theorem 1: The critical point t = ∞ leads to divergence if and only

if Re(β) ≤ 0. The critical point t = 0 leads to divergence if and only if (x = 0 and

Re(r) ≤ −1).

We see

Lemma 3 If Re(β) > 0 and x > 0 the expected value

E
[∫ ∞

0
(Y (t) + xcN(t))rcβN(t)dt

]

(4.10)
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is analytic in r on the whole complex plane, while if Re(β) > 0 and x = 0 it is analytic

in r on the halfplane Re(r) > −1.

Lemma 4 Similarly, if Re(β) > −1 and x > 0

d

dx
E
[∫ ∞

0
(Y (t) + xcN(t))rcβN(t)dt

]

= rE
[∫ ∞

0
(Y (t) + xcN(t))r−1c(β+1)N(t)dt

]

(4.11)

is an entire function of r, and hence

∫ ∞

0

(

(Y (t) + x1c
N(t))r − (Y (t) + x2c

N(t))r
)

cβN(t)dt =

r
∫ ∞

0

∫ x1

x2

(Y (t) + ucN(t)r−1c(β+1)N(t)dudt =

r
∫ x1

x2

∫ ∞

0
(Y (t) + ucN(t)r−1c(β+1)N(t)dtdu. (4.12)

is an entire function in r as long as Re(β) > −1.

5 Quantitative Results for Expected values of Inte-

grals

Let τk (k ≥ 1) be the k-th event of the Poisson process after time zero. Even though

(with probability one) time zero is not an event of the Poisson process, we let τ0 = 0,

and Ek = τk+1 − τk, so that (Ek)
∞
k=0 are i.i.d., exponentially distributed with parameter

λ. Now, as long as r 6= −1:

∫ ∞

0
(Y (t) + xcN(t))rcβN(t)dt =

∞
∑

k=0

∫ τk+1

τk

(Y (t) + xck)rcβkdt =

∞
∑

k=0

cβk

r + 1

(

(Y (τ+
k ) + (τk+1 − τk) + xck)r+1 − (Y (τ+

k ) + xck)r+1
)

=

∞
∑

k=0

cβk

r + 1
(Y (τ−k+1) + xck)r+1 −

xr+1

r + 1
−

∞
∑

k=1

cβk

r + 1
(cY (τ−k ) + xck)r+1 =
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−
xr+1

r + 1
+

1 − cr+β+1

r + 1

∞
∑

k=0

cβk(Y (τ−k+1) + xck)r+1. (5.1)

It is easily seen that as long as Re(β) > 0 the re-arranging of terms above is warranted.

Next, we take expected values in (5.1). Clearly,

Y (τ−k+1) =
k
∑

j=0

cjEk−j , (5.2)

so that Y (τ−k+1) has Laplace transform

k
∏

j=0

1

1 + cjs
λ

=
k
∑

j=0

Aj,k

1 + cjs
λ

, (5.3)

and density
k
∑

j=0

Aj,k
λ

cj
e−

λ

cj y, (5.4)

where

Aj,k =
∏

ν 6= j
0 ≤ ν ≤ k

1

1 − cν−j
=

(−1)jc
1
2
j(j+1)

(1 − c) · · · (1 − cj)(1 − c) · · · (1 − ck−j)
. (5.5)

It is interesting to compare Aj,k with Rj in [2]. Aj,k = Rj
∏∞

ν=1(1 − ck−j+ν) and Rj =

limk→∞Aj,k. The random variable Z in (1.5) has density

∞
∑

j=0

Rj
λ

cj
e−

λ

cj z. (5.6)

We observe that by (A.4)

∞
∑

j=0

|Aj,j+ν|c
j(r+1+β) =

1

(1 − c) · · · (1 − cν)

∞
∏

µ=0

(1 + cr+2+β+µ) (5.7)

which on occasion can be used to prove absolute convergence, and we observe that

k
∑

j=0

Aj,k = 1,
∞
∑

j=0

Rj = 1, (5.8)

∞
∑

j=0

Aj,j+kz
j =

∏∞
ν=1(1 − cνz)

(1 − c) · · · (1 − ck)
, (5.9)
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−(1 − cβ)
∞
∑

k=0

cβk
k
∑

j=0

jAj,k =

(

∞
∏

ν=0

1

1 − cβ+1+ν

)





∞
∑

j=1

(−1)j−1jc
1
2
j(j+1)cβj

(1 − c) · · · (1 − cj)



 =





∞
∑

ν=0

(−1)νc
1
2
ν(ν+1)cβν

(1 − c) · · · (1 − cν)





−1



∞
∑

j=1

(−1)j−1jc
1
2
j(j+1)cβj

(1 − c) · · · (1 − cj)



 =

∞
∑

j=1

cβ+j

1 − cβ+j
. (5.10)

(5.10) uses (A.14). In (5.10) the last but one expression is the one to be used for

numerical purposes, but in formulas we will use the more compact last expression.

Using the results above and the fact (see [43]) that

∫ ∞

0
e−y log (y)dy = Γ′(1) = −γ = −.57721566490 · · · , (5.11)

where γ is Euler’s constant, we straightforwardly obtain that

E[log (Z)] = −γ − log (λ) − (log (c))
∞
∑

j=1

cj

1 − cj
. (5.12)

By (5.1)–(5.3)

E
[∫ ∞

0
(Y (t) + xcN(t))rcβN(t)dt

]

=

−
xr+1

r + 1
+

1 − cr+β+1

r + 1

∞
∑

k=0

cβk
k
∑

j=0

Aj,k

∫ ∞

0
(y + xck)r+1 λ

cj
e−

λ

cj ydy =

−
xr+1

r + 1
+

1 − cr+β+1

(r + 1)λr+1

∞
∑

k=0

cβk
k
∑

j=0

Aj,kc
j(r+1)

∫ ∞

0
(v + λxck−j)r+1e−vdv =

−
xr+1

r + 1
+

1 − cr+β+1

(r + 1)λr+1

∞
∑

k=0

cβk
k
∑

j=0

Aj,kc
j(r+1)e+λxck−j

∫ ∞

λxck−j
ur+1e−udu. (5.13)
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We can rewrite (5.13) with either the lower incomplete gamma functions γ(a, x) or with

the upper incomplete Gamma functions Γ(a, x), see e.g. [43]. Since possibly Re(r) < −2

we use the upper incomplete Gamma functions and get

E
[∫ ∞

0
(Y (t) + xcN(t))rcβN(t)dt

]

=

−
xr+1

r + 1
+

1 − cr+β+1

(r + 1)λr+1

∞
∑

ν=0

cβν
∫ ∞

0

(

(v + λxcν)r+1e−vdv
)

∞
∑

j=0

Aj,j+νc
j(r+1+β) =

−
xr+1

r + 1
+

1

(r + 1)λr+1





∞
∏

µ=0

(1 − cr+1+β+µ)





∞
∑

ν=0

cβν
∫∞
0 (v + λxcν)r+1e−vdv

(1 − c) · · · (1 − cν)
=

−
xr+1

r + 1
+

1

(r + 1)λr+1





∞
∏

µ=0

(1 − cr+1+β+µ)





∞
∑

ν=0

cβνeλxcν

Γ(r + 2, λxcν)

(1 − c) · · · (1 − cν)
. (5.14)

The last but one step uses (A.13). To check whether the change in order of summation

in (5.14) is warranted we use (5.7) and observe that (unless (x = 0 and Re(r) ≤ −1))

the infinite sum in the RHS of (5.14) is finite when Re(r + β) > −2, infinite when r and

β are real and r + β ≤ −2. The latter follows from the fact (easily verified by partial

integration) that for λx > 0, 0 < c < 1 and a real:

lim
ν→∞

c−aνΓ(a, λxcν) =











+∞ if a ≥ 0,

1
|a|(λx)|a|

if a < 0.
(5.15)

Combining this with (5.7) we see that re-ordering of terms in the sums in (5.14) is war-

ranted as long as Re(r + β) > −2. Therefore (5.14) holds as long as (Re(β) > 0 and

Re(r + β) > −2). The last expression in (5.14) will be useful in the next section.

If not only Re(β) > 0 and Re(r + β) > −2 but also Re(r) > −2 we can use the fact

that Γ(r+2, λxcν) = Γ(r+2)−γ(r+2, λxcν) to obtain (also using Lemma A.4 and other

results from Appendix A):

E
[∫ ∞

0
(Y (t) + xcN(t))rcβN(t)dt

]

=
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Γ(r + 1)

λr+1

∞
∑

n=0

(λx)n

n!





∞
∏

µ=0

1 − cr+1+β+µ

1 − cn+β+µ





−
1

λr+1

∞
∑

n=1

(λx)r+n

(r + 1) · · · (r + n)





n−1
∏

µ=1

(1 − cr+β+µ)



 . (5.16)

It must be noted that in the RHS of (5.16) both components have singularities in

r = −1,−2, · · ·. These singularities annihilate each other: the LHS in (5.16) is an entire

function of r (as long as Re(β) > 0 and x > 0). Thus, while the proof of (5.16) depends

on Re(r) > −2, the result, by analytic continuation, is valid for all r and can be used to

compute the expected value of the integral as long as Re(β) > 0 and r is not a negative

integer. As function of β, the first component in the RHS has singularities (simple poles)

in β = 0,−1,−2, · · ·.

If r is a non-negative integer, r = k, (5.16) becomes

E
[∫ ∞

0
(Y (t) + xcN(t))kcβN(t)dt

]

=

k!

λk+1

k
∑

ν=0

(λx)ν

ν!

1

(1 − cν+β) · · · (1 − ck+β)
, (5.17)

from which we obtain an alternative derivation of (3.21).

From (5.16) we easily see that for every k ∈ {0, 1, 2, · · ·}, r 6∈ {−k,−k + 1, · · · ,−1},

E
[∫ ∞

0
(Y (t) + xcN(t))rcβN(t)dt

]

=

−
1

λr+1

k
∑

j=1

(λx)r+j

r + j





j−1
∏

µ=1

1 − cr+β+µ

r + µ



+

λk





k
∏

µ=1

1 − cr+β+µ

r + µ



E
[∫ ∞

0
(Y (t) + xcN(t))r+kcβN(t)dt

]

. (5.18)

An alternate way to prove (5.18) is directly from (5.14), using the observation that

exΓ(r, x) = −xr

r
+ xr

r
Γ(r + 1, x).
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By continuity, (5.18) shows that for k ∈ {2, 3, · · ·}

E
[∫ ∞

0
(Y (t) + xcN(t))−kcβN(t)dt

]

=

−
k−1
∑

j=1

λj−1 x
−k+j

−k + j





j−1
∏

µ=1

1 − c−k+β+µ

−k + µ





+λk−1





k−1
∏

µ=1

1 − c−k+β+µ

−k + µ



E
[∫ ∞

0
(Y (t) + xcN(t))−1cβN(t)dt

]

. (5.19)

We will now study the case r = −1. If r = −1 we obtain, following the same recipe

as in (5.1) etc:
∫ ∞

0

cβN(t)

Y (t) + xcN(t)
dt =

− log (x) −
cβ log (c)

1 − cβ
+ (1 − cβ)

∞
∑

k=0

cβk log (Y (τ−k ) + xck), (5.20)

hence

E

[

∫ ∞

0

cβN(t)

Y (t) + xcN(t)
dt

]

=

− log (x) −
cβ log (c)

1 − cβ
+ (1 − cβ)

∞
∑

k=0

cβkE[log (Y (τ−k ) + xck)]. (5.21)

Since ordinary convergence implies convergence in the sense of Abel, we have

lim
β↓0

(1 − cβ)
∞
∑

k=0

cβkE[log (Y (τ−k ) + xck)] = E[log (Z)], (5.22)

independent of x ≥ 0, where of course Z has the distribution as in (1.5). For many

purposes there is no need to work out (5.21) in more detail. In case more detail is needed,

we easily obtain (using ideas similar to Lemma A.4 and the proof of (5.16))

E

[

∫ ∞

0

cβN(t)

Y (t) + xcN(t)
dt

]

=

− log (λx) − log (c)





∞
∑

j=0

cβ+j

1 − cβ+j
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+





∞
∏

j=0

(1 − cβ+j)





∞
∑

ν=0

cβν

(1 − c) · · · (1 − cν)

∫ ∞

0
(log (v + λxcν)) e−vdv =

− log (λx) − γ
∞
∑

ν=0

(λx)ν

ν!
(1 − cβ) · · · (1 − cβ+ν−1) − log (c)





∞
∑

j=0

cβ+j

1 − cβ+j





−





∞
∏

j=0

(1 − cβ+j)





∞
∑

ν=0

cβνeλxcν ∫ λxcν

0 log (u)e−udu

(1 − c) · · · (1 − cν)
. (5.23)

We can rewrite further using Lemma A.5. Such a re-write shows that

∞
∑

ν=0

cβνeλxcν ∫ λxcν

0 log (u)e−udu

(1 − c) · · · (1 − cν)
(5.24)

as function of β is analytic on Re(β) > −1 and has a pole of order 2 in β = −1, so that





∞
∏

j=0

(1 − cβ+j)





∞
∑

ν=0

cβνeλxcν ∫ λxcν

0 log (u)e−udu

(1 − c) · · · (1 − cν)
(5.25)

as function of β is analytic on Re(β) > −1, has a pole of order 1 in β = −1, and for β = 0

is zero for all values of x.

We can substitute (5.23) into (5.19) to take care of the situation r ∈ {−2,−3, · · ·}.

If the initial value X(0) is random, we can take expected values in (5.14), (5.16),

(5.18), (5.19), (5.23).

The most interesting such situation is where X(0) has the distribution of Z in (1.5), so

that all X(t) has that same distribution. However, in that situation, simply replacing xν

by E[Zν ] and using (1.6) does not work because in (5.16) it leads to ∞−∞. Instead we

use the fact that (for Re(r) > −2, and with the substitution x = v+λzcν , y = v−λzcν)

E
[∫ ∞

0
(v + λZcν)r+1e−vdv

]

=
∞
∑

j=0

Rj
λ

cj

∫ ∞

0

∫ ∞

0
(v + λzcν)r+1e−ve−

λ

cj zdvdz =

∞
∑

j=0

Rj

2cν+j

∫ ∞

0
xr+1e−

x
2
( 1

cν+j +1)
∫ +x

−x
e

y
2
( 1

cν+j −1)dydx = Γ(r + 2)
∞
∑

j=0

Rj
1 − c(r+2)(ν+j)

1 − cν+j
, (5.26)
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where if ν = j = 0 1−c(r+2)(ν+j)

1−cν+j is interpreted as (r + 2).

For the case r = −1 we similarly obtain

E
[∫ ∞

0
(log (v + λZcν)) e−vdv

]

= −γ − (log (c))
∞
∑

j=0

Rj
(ν + j)cν+j

1 − cν+j
, (5.27)

where if ν = j = 0 ν+j
1−cν+j is interpreted as −1

log (c)
.

(5.26), (5.27) can be substituted into (5.14), (5.18), (5.19), (5.23). For Re(β) >

0, Re(r + β) > −2, r 6= −1 this yields

E
[∫ ∞

0
(Y (t) + ZcN(t))rcβN(t)dt

]

=

−
E[Zr+1]

r + 1
+

1

(r + 1)λr+1





∞
∏

µ=0

(1 − cr+1+β+µ)





∞
∑

ν=0

cβνE [
∫∞
0 (v + λZcν)r+1e−vdv]

(1 − c) · · · (1 − cν)
=

−
Γ(r + 1)

λr+1

(

∞
∏

k=1

1 − cr+1+k

1 − ck

)

+
Γ(r + 1)

λr+1

(

∞
∏

k=1

1 − cr+β+k

1 − ck

)

∞
∑

µ=0

cβµ1 − c(r+2)µ

1 − cµ
(1 − c1−β) · · · (1 − cµ−β)

(1 − c) · · · (1 − cµ)
, (5.28)

where if µ = 0 1−c(r+2)µ

1−cµ is interpreted as (r + 2).

The first component in the RHS of (5.28) is a function of r only and has only one

singularity (a simple pole in r = −1). The other singularities of Γ(r + 1) are annihilated

by the infinite product. The infinite sum in the second component of the RHS of (5.28)

converges for Re(β) > 0, Re(r + β) > −2, We have not succeeded in sufficiently sim-

plifying that infinite sum in the second component of the RHS of (5.28). Because of the

first remark following (5.28) the second component has, for Re(β > 0, as function of r,

only one singularity, namely a simple pole in r = −1.

Similarly, (5.27) yields

E

[

∫ ∞

0

cβN(t)

(Y (t) + ZcN(t))
dt

]

=
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−E[log (λZ)]−(log (c))
∞
∑

j=0

cβ+j

1 − cβ+j
+





∞
∏

j=0

(1 − cβ+j)





∞
∑

ν=0

cβνE [
∫∞
0 (log (v + λZcν))e−vdv]

(1 − c) · · · (1 − cν)
=

(log (c))









∞
∑

j=1

cj

1 − cj



−





∞
∑

j=0

cβ+j

1 − cβ+j









−(log (c))





∞
∏

j=0

1 − cβ+j

1 − cj+1





∞
∑

µ=0

µc(1+β)µ

1 − cµ
(1 − c1−β) · · · (1 − cµ−β)

(1 − c) · · · (1 − cµ)
, (5.29)

where if µ = 0 µ
1−cµ is interpreted as −1

log (c)
. We have not succeeded in sufficiently

simplifying the infinite sum in the second component of the RHS of (5.29). It converges

for Re(β) > −1. The first component converges for Re(β) > 0.

It may be of interest to observe that with β = 1 the last expression reduces to

E

[

∫ ∞

0

cN(t)

Y (t) + ZcN(t)
dt

]

= 1. (5.30)

We can use (5.18) to obtain that for any n ∈ {0, 1, · · ·}

E
[∫ ∞

0
(Y (t) + ZcN(t))rcβN(t)dt

]

=

−
n
∑

j=1

λj−1E[Zr+j ]

r + j





j−1
∏

µ=1

1 − cr+β+µ

r + µ





+λn





n
∏

µ=1

1 − cr+β+µ

r + µ



E
[∫ ∞

0
(Y (t) + ZcN(t))r+ncβN(t)dt

]

. (5.31)

For r = −k ∈ {−2,−3, · · ·} we choose n = k − 1 and use (5.29). Otherwise, we choose

n such that Re(r + n + β) > −2. In that case it is an interesting problem to choose the

“best” value of n.

It must be noted that while, in (5.28), (5.29), (5.30), (5.31), X(t) = (Y (t) + ZcN(t))

always has the stationary distribution, i.e. the distribution of Z, no such simple result

holds for X(t)rcβN(t) =
(

Y (t) + ZcN(t)
)r
cβN(t).
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Because “ordinary” convergence implies convergence in the sense of Abel, (5.15) also

shows (for convenience of the reader we changed the sign of r) that if Re(r) > 2 then

E

[

∫ ∞

0

1

(Y (t) + xcN(t))r
c(r−2)N(t)dt

]

=

lim
β↓r−2

[

∫ ∞

0

1

(Y (t) + xcN(t))r
cβN(t)dt

]

=

1

(r − 1)xr−1
+

(1 − c)λ

c(r − 1)(r − 2)xr−2
. (5.32)

Another case where (5.14) gives a simple answer is the case “r + β = −1”. For ease

of reading we again change the sign of r and get: If Re(r) > 1 then

E

[

∫ ∞

0

1

(Y (t) + xcN(t))r
c(r−1)N(t)dt

]

=
1

(r − 1)xr−1
. (5.33)

6 Expected values of integrals of differences

In this section we obtain expressions for

D(x1, x2, r, β) = E
[∫ ∞

0

(

(Y (t) + x1c
N(t))r − (Y (t) + x2c

N(t))r
)

cβN(t)dt
]

, (6.1)

and

D(x, Z, r, β) = E
[∫ ∞

0

(

(Y (t) + xcN(t))r − (Y (t) + ZcN(t))r
)

cβN(t)dt
]

, (6.2)

i.e., we evaluate integrals of differences as in (5.1) and their expected values, and also

similar differences between starting with X(0) = x and starting with X(0) = Z.

From (5.16) we immediately obtain

D(x1, x2, r, β) =

Γ(r + 1)

λr+1





∞
∏

µ=1

1 − cr+β+µ

1 − cβ+µ





∞
∑

n=1

λn

n!
(xn

1 − xn
2 )





n−1
∏

µ=1

(1 − cβ+µ)
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−
1

λr+1

∞
∑

n=1

λr+n(xr+n
1 − xr+n

2 )

(r + 1) · · · (r + n)





n−1
∏

µ=1

(1 − cr+β+µ)



 . (6.3)

In (6.3), if r + n = 0 then
(xr+n

1 −xr+n
2 )

r+n
is interpreted as log (x1

x2
). Both components in the

RHS still have singularities in r = −1,−2, · · ·. These singularities still annihilate each

other. As function of β, the first component in the RHS of (6.3) has singularities (simple

poles) in β = −1,−2, · · ·.

For r = −1 we obtain from (5.23)

D(x1, x2,−1, β) =

− log (
x1

x2

) − γ
∞
∑

ν=1

λν(xν
1 − xν

2)

ν!
(1 − cβ) · · · (1 − cβ+ν−1)

−





∞
∏

j=0

(1 − cβ+j)





∞
∑

ν=0

cβν
(

eλx1cν ∫ λx1cν

0 (log(u))e−udu− eλx2cν ∫ λx2cν

0 (log(u))e−udu
)

(1 − c) · · · (1 − cν)
.

(6.4)

For r ∈ {−2,−3, · · ·} we use (5.19) and (6.4). We leave this result as an exercise for

the reader.

In order to prepare for (1.16) we obtain, for Re(r) > −2, r 6= −1, Re(β) > −1

E
[∫ ∞

0

(

(Y (t) − xcN(t))r − (Y (t) − ZcN(t))r
)

cβN(t)dt
]

=

−
xr+1 −E[Zr+1]

r + 1

+
1

(r + 1)λr+1





∞
∏

µ=0

(1 − cr+1+β+µ)



×

∞
∑

ν=0

cβν

(1 − c) · · · (1 − cν)





∫ ∞

0
(v + λxcν)r+1e−vdv − Γ(r + 2)

∞
∑

j=0

Rj
1 − c(r+2)(ν+j)

1 − cν+j



 . (6.5)

Now:
∫ ∞

0
(v + λxcν)r+1e−vdv − Γ(r + 2)

∞
∑

j=0

Rj
1 − c(r+2)(ν+j)

1 − cν+j
=
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eλxcν

Γ(r + 2) − eλxcν

γ(r + 2, λxcν) − Γ(r + 2)
∞
∑

j=0

Rj
1 − c(r+2)(ν+j)

1 − cν+j
=

(eλxcν

− 1)Γ(r + 2) − eλxcν

γ(r + 2, λxcν) + Γ(r + 2)



1 −
∞
∑

j=0

Rj
1 − c(r+2)(ν+j)

1 − cν+j



 =

Γ(r + 2)(eλxcν

− 1) − eλxcν

γ(r + 2, λxcν) − Γ(r + 2)
∞
∑

j=0

Rjc
ν+j 1 − c(r+1)(ν+j)

1 − cν+j
, (6.6)

which after some (by now standard) arithmetic yields

E
[∫ ∞

0

(

(Y (t) − xcN(t))r − (Y (t) − ZcN(t))r
)

cβN(t)dt
]

=

Γ(r + 1)

λr+1

∞
∑

n=1

(λx)n

n!





∞
∏

µ=0

1 − cr+1+β+µ

1 − cn+β+µ





−
1)

λr+1

∞
∑

n=1

(λx)r+n

(r + 1) · · · (r + n)
(1 − cr+1+β) · · · (1 − cr+n−1+β)

+
Γ(r + 1)

λr+1





∞
∏

µ=1

1 − cr+1+µ

1 − cµ





−
Γ(r + 1)

λr+1





∞
∏

µ=1

1 − cr+β+µ

1 − cµ





∞
∑

n=0

c(1+β)n 1 − c(r+1)n

1 − cn
(1 − c1−β) · · · (1 − cn−β)

(1 − c) · · · (1 − cn)
, (6.7)

where if n = 0 1−c(r+1)n

1−cn is interpreted as r + 1. While the derivation uses the fact

that Re(r) > −2, we see by analytic continuation that the result holds for Re(β) >

−1, Re(r + β) > −2, r 6∈ {−1,−2, · · ·}.

For r = −1 we combine (5.23) and (5.29) and obtain

E

[

∫ ∞

0

(

1

Y (t) + xcN(t)
−

1

Y (t) + ZcN(t)

)

cβN(t)dt

]

=

− log (λx) − γ
∞
∑

ν=0

(λx)ν

ν!
(1 − cβ) · · · (1 − cβ+ν−1) − (log (c))

∞
∑

j=1

cj

1 − cj

−





∞
∏

j=0

(1 − cβ+j)





∞
∑

ν=0

cβνeλxcν ∫ λxcν

0 log (u)e−udu

(1 − c) · · · (1 − cν)
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−(log (c))





∞
∏

j=0

1 − cβ+j

1 − cj+1





∞
∑

µ=0

µc(1+β)µ

1 − cµ
(1 − c1−β) · · · (1 − cµ−β)

(1 − c) · · · (1 − cµ)
, (6.8)

where if µ = 0 µ
1−cµ still is interpreted as −1

log (c)
. (6.8) converges for Re(β) > −1.

The case

E
[∫ ∞

0

(

(Y (t) + xcN(t))r − (Y (t) + ZcN(t))r
)

cβN(t)dt
]

(6.9)

with Re(β) > −1, Re(r + β) ≤ −2 is left as an exercise for the reader.

Note that (6.3), (6.4, (6.7) and (6.8) all four, as functions of β, are analytic on Re(β) >

−1, so that in the next section setting β = 0 will not be a problem.

7 The case β = 0

(6.3) with β = 0 yields

D(x1, x2, r, 0) =

Γ(r + 1)

λr+1

∞
∑

n=1

λn

n!
(xn

1−x
n
2 )





∞
∏

µ=1

1 − cr+µ

1 − cn−1+µ



−
∞
∑

n=1

λn−1x
r+n
1 − xr+n

2

r + n





n−1
∏

µ=1

1 − cr+µ

r + µ



 , (7.1)

where if r + n = 0
xr+n
1 −xr+n

2

r+n
is interpreted as log (x1

x2
), and if r + µ = 0 1−cr+µ

r+µ
is

interpreted as − log (c).

If r = −k ∈ {−1,−2, · · ·} then (Γ(r + 1))(1 − cr+k) is interpreted as (−1)k log (c)
(k−1)!

.

If r = k ∈ {0, 1, 2, · · ·} (7.1) reduces to

D(x1, x2, k, 0) =

k!

λk+1

k
∑

ν=1

λν x
ν
1 − xν

2

ν!

1

(1 − cν) · · · (1 − ck)
. (7.2)

If r = −1 (7.1) reduces to

D(x1, x2,−1, 0) = − log (
x1

x2
). (7.3)
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The case D(x1, x2,−k, 0) with k ∈ {2, 3, · · ·} is left as an exercise for the reader.

From (6.7) we see that for Re(r) > −2, r 6= −1

D(x, Z, r, 0) =

Γ(r + 1)

λr+1

∞
∑

n=1

(λx)n

n!





∞
∏

µ=0

1 − cr+1+µ

1 − cn+β+µ





−
1

λr+1

∞
∑

n=1

(λx)r+n

(r + 1) · · · (r + n)
(1 − cr+1) · · · (1 − cr+n−1)

+
Γ(r + 1)

λr+1





∞
∏

µ=1

1 − cr+1+µ

1 − cµ





−
Γ(r + 1)

λr+1





∞
∏

µ=1

1 − cr+µ

1 − cµ





∞
∑

n=0

cn
1 − c(r+1)n

1 − cn
, (7.4)

where if n = 0 1−c(r+1)n

1−cn is interpreted as r + 1.

For r = −1 (6.8) gives

D(x, Z,−1, 0) =

− log (λx) − γ − (log (c))
∞
∑

j=1

cj

1 − cj
. (7.5)

The case of D(x, Z, r, 0) with Re(r) ≤ −2 we leave as an exercise to the reader.

8 Transform Techniques

We define:

ψ(x, t, s, z) = E[exp{−s(Y (t) + xcN(t))}zN(t)]. (8.1)

Let y be the last point of the Poisson process (τk)k in the interval (0, t]. With probability

e−λt there is no such point. This gives

ψ(x, t, s, z) = e−λte−s(x+t) + λz
∫ t

0
e−(s+λ)(t−y)ψ(x, y, cs, z)dy. (8.2)
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We define:

η(x, σ, s, z) =
∫ ∞

0
e−σtψ(x, t, s, z)dt. (8.3)

With (8.2) this gives

η(x, σ, s, z) =
1

σ + λ+ s

(

e−sx + λz η(x, σ, cs, z)
)

. (8.4)

Repeating this procedure we see that for all k ∈ {1, 2, · · ·}

η(x, σ, s, z) =
k−1
∑

j=0

(λz)j exp{−sxcj}
∏j

ν=0(σ + λ+ cνs)
+

(λz)k

∏k−1
ν=0(σ + λ+ cνs)

η(x, σ, cks, z). (8.5)

For |z| ≤ 1, Re(σ) > 0, Re(s) > 0 this gives

η(x, σ, s, z) =
∞
∑

j=0

(λz)j exp{−sxcj}
∏j

ν=0(σ + λ+ cνs)
. (8.6)

For use in the the proof of Theorem 2 in the next section we re-write (8.6) as

η(x, σ, s, z) =
∞
∑

k=0

(

λz

σ + λ

)k
e−sxck

(σ + λ)
∏k

j=0(1 + s
σ+λ

cj)
. (8.7)

By partial fraction expansion we then prove that

η(x, σ, s, z) =

e−sx

σ + λ+ s
+

∞
∑

k=1

zke−sxck
k
∑

j=0

(−1)jc
1
2
j(j+1)





j
∏

ν=1

1

1 − cν

k−j
∏

ν=1

1

1 − cν





(

λ

σ + λ

)k
1

σ + λ+ scj
.

(8.8)

Hence

ψ(x, t, s, z) =

e−sxe−t(λ+s)+

e−λt
∞
∑

k=1

(λz)k
k
∑

j=0

(−1)jc
1
2
j(j+1)





j
∏

ν=1

1

1 − cν

k−j
∏

ν=1

1

1 − cν



 e−sxck
∫ t

0

yk−1

(k − 1)!
e−(t−y)scj

dy.

(8.9)
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In Section 9 we will formulate real domain results for transient densities which are a

direct consequence of (8.9) above.

Before going to those transient densities we use (8.5) to give an alternative proof of

(1.5). Using (3.3), (3.25) we obtain that for |z| ≤ 1, s ↓ 0,

ψ(x, t, 0, z) − ψ(x, t, s, z) = exp{−λt(1 − z)} − ψ(x, t, s, z) =

s

(

exp{λt(1 − z)}

λz(1 − c)
+ (x−

1

λz(1 − c)
) exp{−λt(1 − cz)}

)

+ o(s)(s ↓ 0), (8.10)

where for all 0 < x0 < ∞ the o(s) is uniform on |z| ≤ 1, 0 ≤ x ≤ x0, 0 ≤ t < ∞. Hence,

for k ∈ {1, 2, · · ·} we have

η(x, σ, s, z) =
k−1
∑

j=0

(λz)j exp{−sxcj}
∏j

ν=0(σ + λ+ cνs)
+

(λz)k

∏k−1
ν=0(σ + λ+ cνs)

(

1

σ + λ(1 − z)
−

sck

σ + λ(1 − cz)
(x+

1

σ + λ(1 − c)
) +

o(sck)(k ↑ ∞)

σ

)

,

(8.11)

where for every 0 < s0 <∞, 0 < x0 <∞ the o(sck) is uniform on |z| ≤ 1, 0 ≤ x ≤ x0, 0 <

s ≤ s0, 0 ≤ σ <∞. Hence:

ψ(x,∞, s, 1) = lim
σ↓0

ση(x, σ, s, 1) =

(

k−1
∏

ν=0

1

1 + s cν

λ

)

(1 + o(sck))(k ↑ ∞). (8.12)

We (again) obtain (1.5) by letting k ↑ ∞.

9 Transient Distributions

The following lemma makes it easier to relate the various formulations of the main result

in this section:

Lemma 5 For all k ∈ {1, 2, · · ·} and all t and u

k
∑

j=0

(−1)jc
1
2
j(j+1)c−kj





j
∏

ν=1

1

1 − cν









k−j
∏

ν=1

1

1 − cν



 (tcj + u)k−1 = 0. (9.1)
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This lemma will be proven in Appendix A.

In the following, it always is understood that x ≥ 0 and t > 0. The main result in

this section is

Theorem 2. For k ≥ 1, choose any ymin, ymax with

−∞ ≤ ymin ≤ (x+ t)ck < xck + t ≤ ymax ≤ +∞, (9.2)

(where ymin, ymax are allowed to depend on k). Then (for k ≥ 1):

d

dy
P{N(t) = k,X(t) ≤ y|X(0) = x} =

e−λtλk

(k − 1)!

k
∑

j=0

(−1)jc
1
2
j(j+1)c−kj





j
∏

ν=1

1

1 − cν









k−j
∏

ν=1

1

1 − cν



×

(xck + tcj − y)k−1χ(ymin < y < xck + tcj) =

e−λtλk

(k − 1)!

k
∑

j=0

(−1)k−jc
1
2
j(j+1)c−kj





j
∏

ν=1

1

1 − cν









k−j
∏

ν=1

1

1 − cν



×

(y − (xck + tcj))k−1χ(xck + tcj < y < ymax). (9.3)

Because of (9.1) the actual values of ymin and ymax do not matter, as long as they satisfy

(9.2).

For k = 0:

P{N(t) = 0, X(t) ≤ y|X(0) = x} =











0 if y < x+ t,

e−λt if y ≥ x+ t.
(9.4)

For ymin < y < ymax and k ≥ 1 choose n = n(y, k) such that

n =



























k if y ≤ (x+ t)ck,

such that xck + tcn+1 < y ≤ xck + tcn if (x+ t)ck < y ≤ xck + t,

−1 if xck + t < y.

(9.5)
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The two expressions in (9.3) are reconciled by observing that

k
∑

j=0

(−1)jc
1
2
j(j+1)c−kj





j
∏

ν=1

1

1 − cν









k−j
∏

ν=1

1

1 − cν



×

(xck + tcj − y)k−1χ(ymin < y < xck + tcj) =

n
∑

j=0

(−1)jc
1
2
j(j+1)c−kj





j
∏

ν=1

1

1 − cν









k−j
∏

ν=1

1

1 − cν



 (xck + tcj − y)k−1 =

−
k
∑

j=n+1

(−1)jc
1
2
j(j+1)c−kj





j
∏

ν=1

1

1 − cν









k−j
∏

ν=1

1

1 − cν



 (xck + tcj − y)k−1 =

k
∑

j=n+1

(−1)k−jc
1
2
j(j+1)c−kj





j
∏

ν=1

1

1 − cν









k−j
∏

ν=1

1

1 − cν



 (y − (xck + tcj))k−1 =

k
∑

j=0

(−1)k−jc
1
2
j(j+1)c−kj





j
∏

ν=1

1

1 − cν









k−j
∏

ν=1

1

1 − cν



×

(y − (xck + tcj))k−1χ(xck + tcj < y < ymax). (9.6)

For numerical purposes we of course usually choose ymin = (x+ t)ck and ymax = xck + t,

and if n + 1 < k − n we use the sum from 0 to n while if n + 1 > k − n we use the sum

from n + 1 to k. If n + 1 = k − n there does not seem to be a reason to prefer one sum

over the other.

The first formulation of Theorem 2, with ymin = xck, is a direct consequence of (8.9).

The second formulation, and formulations with more general ymin and ymax, then follow

from Lemma 5 above.

10 Moments, from Theorem 2

We define:

µ(x, t, k, r) = E[(X(t))r|X(0) = x,N(t) = k] (10.1)
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and

ν(x, t, k, r) = E[(X(t))rχ(N(t) = k)|X(0) = x] =
(λt)k

k!
e−λtµ(x, t, k, r). (10.2)

In theorem 2, if we choose x = 0, ymin = 0 we get for k ≥ 1

E[(Y (t))rχ(N(t) = k)] =

e−λtλk

(k − 1)!

k
∑

j=0

(−1)jc
1
2
j(j+1)c−kj





j
∏

ν=1

1

1 − cν









k−j
∏

ν=1

1

1 − cν



×

∫ xck+tcj

xck
(y − xck)r(xck + tcj − y)k−1dy =

e−λttr
(λt)k

(r + 1)(r + 2) · · · (r + k)

k
∑

j=0

(−1)jc
1
2
(j−1)jc(r+1)j





j
∏

ν=1

1

1 − cν









k−j
∏

ν=1

1

1 − cν



 =

e−λttr
(λt)k

(r + 1)(r + 2) · · · (r + k)

(1 − cr+1)(1 − cr+2) · · · (1 − cr+k)

(1 − c)(1 − c2) · · · (1 − ck)
(10.3)

The last step uses Lemma A.1 in appendix A.

We find that the same formula holds for k = 0. Thus we have proven

Theorem 3

ν(0, t, k, r) = E[(Y (t))rχ(N(t) = k)] =

e−λtλ
ktk+rΓ(r + 1)

Γ(r + k + 1)

(1 − cr+1)(1 − cr+2) · · · (1 − cr+k)

(1 − c)(1 − c2) · · · (1 − ck)
, (10.4)

µ(0, t, k, r) = E[(Y (t))r|N(t) = k] =

Γ(r + 1)tr
k!

Γ(k + r + 1)

(1 − cr+1)(1 − cr+2) · · · (1 − cr+k)

(1 − c)(1 − c2) · · · (1 − ck)
. (10.5)

It is easily seen that if t ↑ ∞, k ↑ ∞, while k
t
→ λ, indeed µ(0, t, k, r) converges to

E[(X(∞))r] as in (1.6).

(10.4) also gives

E[(Y (t))rcβN(t)] =
∞
∑

j=0

ν(0, t, j, r)cβj =
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Γ(r + 1)tre−λt
∞
∑

j=0

(λtcβ)j

Γ(j + r + 1)

(1 − cr+1)(1 − cr+2) · · · (1 − cr+j)

(1 − c)(1 − c2) · · · (1 − cj)
. (10.6)

For r = k, integer (and non–negative), we already had (3.17). We observe that (10.6)

reduces to (3.17) if r is a non–negative integer.

If r is a non–negative integer then (for later use we write the finite binomial sum, j

from 0 to r, as an infinite sum) we have

µ(x, t, k, r) = E[(Y (t) + xcN(t))r|N(t) = k] =

∞
∑

j=0







r

j





 (xck)r−jµ(0, t, k, j) =

Γ(r + 1)(xck)r
∞
∑

j=0

(xck)−jtj

Γ(r − j + 1)

k!

(k + j)!

(1 − cj+1)(1 − cj+2) · · · (1 − cj+k)

(1 − c)(1 − c2) · · · (1 − ck)
=

(xck)r
∞
∑

j=0

r(r − 1) · · · (r − j + 1)

(k + 1)(k + 2) · · · (k + j)
(
t

xck
)j (1 − cj+1)(1 − cj+2) · · · (1 − cj+k)

(1 − c)(1 − c2) · · · (1 − ck)
, (10.7)

If r is not a non–negative integer (10.7) becomes an infinite sum and we have to check

when it converges and when it is an identity.

For (10.7) to be valid it is sufficient that P{0 ≤ Y (t) < xck} = 1. Since 0 ≤ Y (t) ≤ t

it therefore is sufficient that 0 ≤ t < xck. In fact, (10.7) converges absolutely as long as

0 ≤ t ≤ xck (we leave this as an exercise for the reader). By the material in Appendix

B (10.7) then actually holds as long as either r is a non–negative integer (finite sum) or

0 ≤ t ≤ xck (absolutely converging sum).

A similar argument can be made if 0 ≤ xck ≤ t. Since 0 ≤ xck < t does not guarantee

that 0 ≤ xck < Y (t), this argument depends more heavily on the material in Appendix

B. Nevertheless, we have that as long as either r is a non–negative integer (finite sum) or

0 ≤ xck ≤ t (absolutely converging sum) then

µ(x, t, k, r) = E[(Y (t) + xcN(t))r|N(t) = k] =
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∞
∑

j=0







r

j





 (xck)jµ(0, t, k, r− j) =

Γ(r + 1)tr
∞
∑

j=0

(xck)jt−j

j!

k!

Γ(k + r − j + 1)

(1 − cr−j+1)(1 − cr−j+2) · · · (1 − cr−j+k)

(1 − c)(1 − c2) · · · (1 − ck)
=

k!Γ(r + 1)

Γ(r + k + 1)
tr×

∞
∑

j=0

(r + k)(r + k − 1) · · · (r + k − j + 1)

j!

(

x

t

)j (cj − cr−j+1)(cj − cr−j+2) · · · (cj − cr−j+k)

(1 − c)(1 − c2) · · · (1 − ck)

(10.8)

If r is a non–negative integer then (10.7) and (10.8) both are finite sums, and they are

identical.

If 0 ≤ x ≤ t then 0 ≤ xck ≤ t for all k ≥ 0. Thus, for 0 ≤ x ≤ t we can multiply

(10.8) with P{N(t) = k} and sum over k, thus obtaining that as long as either r is a

non–negative integer or 0 ≤ x ≤ t we have

E[(X(t))rcβN(t)|X(0) = x] =

Γ(r + 1)tre−λt
∞
∑

j=0

(x/t)j

j!

∞
∑

ν=0

(cjλtcβ)ν

Γ(ν + r − j + 1)

(1 − cr−j+1)(1 − cr−j+2) · · · (1 − cr−j+ν)

(1 − c)(1 − c2) · · · (1 − cν)

(10.9)

If r is a non–negative integer the outer sum in (10.9) is a finite sum (j from 0 to r)

and is identical to (3.12). If r is not a non–negative integer but 0 ≤ x ≤ t then (10.9) is

an absolutely converging infinite sum and still is an identity. The latter statement is left

as an exercise for the reader.

If 0 < t ≤ x we still have that 0 ≤ xck < t for k sufficiently large. Therefore, we can

not use (10.7) the same way we used (10.8). It might be possible to obtain useful results

by splitting the sum into the ranges k < log (x)−log (t)
| log (c)|

and k ≥ log (x)−log (t)
| log (c)|

. We have not

tried this.
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A Some auxiliary results

Lemma A.1. For all k ∈ {0, 1, · · ·} and all a:

(1 − a)(1 − ca)(1 − c2a) · · · (1 − ck−1a)

(1 − c)(1 − c2)(1 − c3) · · · (1 − ck)
=

k
∑

j=0

(−1)jc
1
2
(j−1)jaj

j
∏

ν=1

1

1 − cν

k−j
∏

ν=1

1

1 − cν
. (A.1)

Proof A classical result in Hypergeometric Series (see e.g. [42] pp 7, 8 for a proof and

historical notes) is that for |z| < 1, |c| < 1 and a arbitrary

∞
∏

k=0

1 − ckaz

1 − ckz
=

∞
∑

k=0





k−1
∏

j=0

1 − cja

1 − cj+1



 zk. (A.2)

We also know (see [2] for a simple proof or [42] for more background information) that

for |c| < 1,
∞
∏

k=0

1

1 + ckz
=

∞
∑

k=0

(−1)kzk

(1 − c)(1 − c2) . . . (1 − ck)
, (A.3)

and
∞
∏

k=0

(1 + ckz) =
∞
∑

k=0

c
1
2
(k−1)kzk

(1 − c)(1 − c2) . . . (1 − ck)
. (A.4)

The last two results also give a powerseries for (A.2):

∞
∏

k=0

1

1 − ckz

∞
∏

k=0

(1 − ckaz) =
∞
∑

k=0

zk
k
∑

j=0

(−1)jc
1
2
(j−1)jaj

j
∏

ν=1

1

1 − cν

k−j
∏

ν=1

1

1 − cν
. (A.5)

Equating coefficients in the powerseries proves the result.

(A.1) shows that

k
∑

j=0

(−1)jc
1
2
(j−1)jaj

j
∏

ν=1

1

1 − cν

k−j
∏

ν=1

1

1 − cν
=







































δ0,k if a = 1 = c0,

0 if k ≥ 1 and a = c−µ, µ ∈ {0, 1, 2, · · · , k − 1},
∏k−1

j=1
1−cµ+j

1−cj if a = cµ, µ ∈ {1, 2, · · ·},

> 0 if − 1 < c < +1 and − 1 < a < +1.

(A.6)
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If 0 < c < 1 we also know that the expression in (A.1) is positive for all −∞ < a < 1.

With the Binomial Formula, the second case in (A.6) shows that if k, µ, and κ are

integers with 1 ≤ µ ≤ k and 0 ≤ κ ≤ µ− 1 then

k
∑

j=0

(−1)jc
1
2
j(j+1)c−µj





j
∏

ν=1

1

1 − cν

k−j
∏

ν=1

1

1 − cν



 (rcj + β)κ = 0 for all r, β. (A.7)

This proves the lemma in Section 9.

Lemma A.2 For all |c| < 1, all z and all κ, k ∈ {0, 1, 2, · · ·} with κ ≤ k

k
∑

µ=0

(−1)µc
1
2
µ(µ−1)−µ(κ−1)ezcµ

( µ
∏

ν=1

1

1 − cν

)





k−µ
∏

ν=1

1

1 − cν



 =

∞
∑

j=κ

zj

j!

k
∏

ν=1

1 − cj−κ+ν

1 − cν
=

∞
∑

j=0

zj+κ

(j + κ)!

k
∏

ν=1

1 − cj+ν

1 − cν
. (A.8)

Proof: The result trivially holds if k = κ = 0. If k ≥ 1, write, in the LHS, ezcµ

as

powerseries in zcµ, change order of summation, and use (A.6) and (A.1).

Similar results can of course be obtained if ezcµ

is replaced by f(zcµ), where f(.) can

be written as a powerseries.

Somewhat similar results are

Lemma A.3

∞
∑

ν=0

cβνeλxcν

(1 − c) · · · (1 − cν)
=

∞
∑

k=0

(λx)k

k!

∞
∑

ν=0

c(β+k)ν

(1 − c) · · · (1 − cν)
=

(

∞
∏

ν=0

1

1 − cβ+ν

)

∞
∑

k=0

(λx)k

k!
(1 − cβ) · · · (1 − ck−1+β), (A.9)

Lemma A.4

eλxcν

γ(r + 2, λxcν) = (λxcν)r+2
∫ 1

0
sr+2−1e(1−s)λxcν

ds =
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(λxcν)r+2
∫ 1

0
sr+2−1

∞
∑

n=0

(1 − s)n(λxcν)n

n!
ds =

∞
∑

n=0

(λxcν)r+2+n

n!
B(r + 2, n+ 1) =

∞
∑

n=0

(λxcν)r+2+n

(r + 2) · · · (r + 2 + n)
, (A.10)

and Lemma A.5

eλxcν
∫ λxcν

0
(log (u))e−udu =

(eλxcν

− 1) log (λxcν) −
∞
∑

k=1

(λxcν)k

k!

k
∑

n=1

1

n
. (A.11)

The following is often useful to rewrite expressions as occur in this paper:

Observation A.1 If m and n are non–negative integers then

(1 − cm+1) · · · (1 − cm+n)

(1 − c) · · · (1 − cn)
=

(1 − cn+1) · · · (1 − cn+m)

(1 − c) · · · (1 − cm)
. (A.12)

This observation is easily verified by considering the two cases (m ≤ n) and (m ≥ n).

By changing the sign of z in (A.4) we obtain

∞
∏

j=0

(1 − cjz) =
∞
∑

j=0

(−1)j c
1
2
(j−1)jzj

(1 − c)(1 − c2) . . . (1 − cj)
. (A.13)

which we recognize as the limit of (A.1) for k → ∞. By differentiating (A.13) with respect

to z we obtain

Observation A.2





∞
∑

j=0

cj

1 − cjz









∞
∏

j=0

(1 − cjz)



 =
∞
∑

j=1

j(−1)j−1c
1
2
(j−1)jzj−1

(1 − c) · · · (1 − cj)
. (A.14)

B Moments and Powerseries

Suppose we have a function f(.) which has the powerseries

f(x) =
∞
∑

j=0

f (j)(a)

k!
(x− a)j (B.1)
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with radius of convergence R > 0. Suppose X is a random variable. When can we

conclude that

E[f(X)] =
∞
∑

j=0

f (j)(a)

j!
E[(X − a)j ]? (B.2)

Clearly, a sufficient condition is that there exists a 0 < r < R with P{|X − a| < r} = 1.

However, (B.2) often holds even if P{|X − a| > R} > 0. In that case, to prevent trivial

exceptions, we always assume that E[|X − a|j ] <∞ for all j ≥ 0.

It is well known that as long as f (n+1)(.) exists and is continuous over the necessary

range,

f(x) =
n
∑

j=0

f (j)(a)

j!
(x− a)j +

∫ x

a

(x− u)n

n!
f (n+1)(u)du, (B.3)

therefore

E[f(X)] =
n
∑

k=0

f (k)(a)

k!
E[(X − a)k] + E

[

∫ X

a

(X − u)n

n!
f (n+1)(u)du

]

. (B.4)

Under the conditions above, a necessary and sufficient condition for (B.2) to hold is that

lim
n→∞

E

[

∫ X

a

(X − u)n

n!
f (n+1)(u)du

]

= 0. (B.5)

We consider the special case f(x) = (C + x)r = Cr(1 + x
C

)r = xr(1 + C
x
)r with C > 0.

We see that as long as E[Xj ] <∞ for all j ≥ 0

E[(C +X)r] =
∞
∑

j=0







r

j





Cr−jE[Xj ] (B.6)

if and only if

lim
n→∞







r

n





 (r − n)E

[

∫ X/C

0

(

X

C
− u

)n

(1 + u)r−(n+1)du

]

= 0, (B.7)

while as long as E[Xr−j] <∞ for all j ≥ 0

E[(C +X)r] =
∞
∑

j=0







r

j





E[Xr−j]Cj (B.8)
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if and only if

lim
n→∞







r

n





 (r − n)E

[

Xr
∫ C/X

0

(

C

X
− u

)n

(1 + u)r−(n+1)du

]

= 0. (B.9)

If P{X ≥ 0} = 1, (B.6) holds as long as

lim
n→∞







r

n+ 1





E

[

(

X

C

)n+1
]

= 0 (B.10)

(take n + 1 > r). If P{X > 0} = 1, (B.8) holds as long as

lim
n→∞







r

n+ 1





E

[

(

C

X

)r−(n+1)
]

= 0 (B.11)

(take n + 1 > r).

The upshot is that as long as C > 0 and X is a non-negative random variable, each

of (B.6), (B.8) holds as long as the series in the Right Hand Side converges.

Moreover, we know that if C > 0 and X is a non-negative random variable and

n+ 1 ≥ r then

∣

∣

∣

∣

∣

∣

∣

E[(C +X)r] −
n
∑

j=0







r

j





Cr−jE[Xj]

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣







r

n+ 1





Cr−(n+1)E[Xn+1]

∣

∣

∣

∣

∣

∣

∣

(B.12)

while if C > 0 and X is a positive random variable and n+ 1 ≥ r then

∣

∣

∣

∣

∣

∣

∣

E[(C +X)r] −
n
∑

j=0







r

j





CjE[Xr−j]

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣







r

n+ 1





Cn+1E[Xr−(n+1)]

∣

∣

∣

∣

∣

∣

∣

. (B.13)
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