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The Transmission Control Protocol (TCP) is a Transport Protocol
used in the Internet. In [34], a more general class of candidate Trans-
port Protocols called “protocols in the TCP Paradigm” is introduced.
The long run objective of studying this class is to find protocols with
promising performance characteristics. This paper studies Markov
chain models derived from protocols in the TCP Paradigm.
Protocols in the TCP Paradigm, as TCP, protect the network from

congestion by decreasing the “Congestion Window” (the amount of
data allowed to be sent but not yet acknowledged) when there is
packet loss or packet marking, and increasing it when there is no
loss. When loss of different packets are assumed to be independent
events and the probability p of loss is assumed to be constant, the
protocol gives rise to a Markov chain {Wn}, where Wn is the size of
the congestion window after the transmission of the n-th packet.
For a wide class of such Markov chains, we prove weak convergence

results, after appropriate rescaling of time and space, as p→ 0. The
limiting processes are defined by stochastic differential equations. De-
pending on certain parameter values, the stochastic differential equa-
tion can define an Ornstein-Uhlenbeck process or can be driven by a
Poisson process.

1. Introduction. The Congestion Avoidance algorithm of TCP is de-
signed to prevent network congestion during the transmission of data over
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a computer network. It does this by controlling the congestion window, i.e.
the amount of data “transmitted but not yet acknowledged” by a sender.
What follows is a simplified description of a more general class of Transport
Protocols.
Under appropriate units, the congestion window W determines the maxi-

mum amount of data that a source can send without acknowledgement. The
“TCP Paradigm” (see [34]) is a class of protocols that includes TCP (and
other Transport Protocols). For each protocol in the TCP Paradigm there
are two functions, incr(∙) and decr(∙). If, while the congestion window equals
W , a packet is found to be lost (or marked, under ECN – see [19] and [44]),
then the congestion window is reduced by decr(W ). However, the conges-
tion window is never reduced below some fixed minimum value ` ≥ 0. If the
packet is not lost, then the congestion window is increased by incr(W ). For
protocols in the TCP Paradigm, incr(W ) = c1W

α and decr(W ) = c2W
β . In

the special case of TCP, we have c1 = 1, α = −1, c2 = 1/2, and β = 1. An-
other special case of interest is when α = 0 and β = 1. This is the algorithm
which Tom Kelly calls “Scalable TCP” in [22] and [23].
Let Wn denote the size of the congestion window after the transmission

of the n-th packet, or, more accurately, after receipt of the n-th “good”
acknowledgement. Let χn be the indicator function of the event that the n-
th packet is lost, or, more accurately, that there is a loss between the (n−1)-
th and n-th “good” acknowledgement. We shall assume that the χn’s are
independent and identically distributed. In particular, we are assuming that
p = P (χn = 1) is a constant that does not change with time. Under these
assumptions, we are led to the parameterized family of Markov processes

(1.1) Wp,n+1 = (Wp,n + c1W
α
p,n(1− χp,n+1)− c2W

β
p,nχp,n+1) ∨ `.

The assumptions we place on the various parameters in the model are:

{χp,n}
∞
n=1 is an iid sequence of {0, 1}-valued random variables,(1.2)

p = P (χp,n = 1),(1.3)

c1 > 0 and c2 > 0,(1.4)

−∞ < α < β ≤ 1 and ` ≥ 0,(1.5)

if β = 1, then c2 < 1, and(1.6)

if β < 1, then ` > 0.(1.7)

We will frequently drop the dependence on p from our notation and simply
refer to the processes {χn} and {Wn}.
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We are interested in studying the asymptotic behavior of {Wn} as p→ 0.
To this end, we define the continuous time process

(1.8) Zp(t) = p
γWbtp−νc, where γ = (β − α)

−1 and ν = (1− α)γ.

In the case that β = 1, we will show that Zp converges weakly as p → 0 to
the process Z defined by

(1.9) Z(t) = Z(0) + c1

∫ t

0
Z(s)α ds− c2

∫ t

0
Z(s−) dN(s),

where N is a unit rate Poisson process, independent of Z(0) = limZp(0).
(Note that this is the conjecture given on page 362 of [34].) We will also show
that, when ` > 0, the stationary distributions of the discrete time Markov
chains {pγWn} converge weakly to the unique stationary distribution of
Z. Questions about the convergence of the stationary distributions when
β = 1, as well as the rate of convergence, are addressed in [36] and [39]
using techniques that differ from those used in this paper.
In the case that β < 1, we will show that Zp converges to the process ζ

defined by

(1.10) ζ(t) = ζ(0) +

∫ t

0
(c1ζ(s)

α − c2ζ(s)
β) ds,

where ζ(0) = limZp(0). With the exception of the initial condition, the
process ζ is entirely deterministic. The convergence of Zp to ζ is therefore a
law of large numbers type of result. Hence, in the case β < 1, we can extend
our analysis and study the fluctuations of Zp around this central tendency.
Unfortunately, it will not suffice to center Zp by ζ. We must rather define

(1.11) ζp(t) = ζp(0) +

∫ t

0
(c1(1− p)ζp(s)

α − c2ζp(s)
β) ds,

where ζp(0)→ ζ(0), and consider the processes

(1.12) ξp(t) = p
−τ (Zp(t)− ζp(t)), where τ = (ν − 1)/2.

We will show that ξp converges weakly as p→ 0 to the process ξ defined by

ξ(t) = ξ(0) +

∫ t

0
(c1αζ(s)

α−1 − c2βζ(s)
β−1)ξ(s) ds

− c2

∫ t

0
ζ(s)β dB(s),

(1.13)

where B is a Brownian motion and ξ(0) = lim ξp(0).
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A special case of this last result is worth mentioning. For each p ∈ [0, 1),
define

(1.14) cp = (c1(1− p)/c2)
γ ,

so that ζp(t) = cp is an invariant solution to (1.11). Also, ζ(0) = lim ζp(0) =
c0 is an invariant solution to (1.10). Hence, for an appropriate choice of
Zp(0), ξp converges to the Ornstein-Uhlenbeck process defined by

(1.15) dξ = −μξdt+ σdW,

where W = −B,

μ = c2β(c1/c2)
γ(β−1) − c1α(c1/c2)

γ(α−1)

= (β − α)c−(1−β)/(β−α)1 c
(1−α)/(β−α)
2 ,

and
σ = c2(c1/c2)

γβ = c
β/(β−α)
1 c

−α/(β−α)
2 .

(Note that this is the conjecture given on page 364 of [34].) We will also
show that the stationary distributions of the discrete time Markov chains
{p−τ (pγWn − cp)} converge weakly to the unique stationary distribution of
the above Ornstein-Uhlenbeck process.
It should be remarked that in this paper we use so-called “packet time.”

That is, the progress of time is expressed in number of data packets sent, or,
more accurately, number of good acknowledgements received. Several papers
analyzing TCP use “clock time,” where the progress of time is expressed in
number of Round Trip Times (RTTs) elapsed. If the congestion window is
the only limit on the “flight size” (amount of data transmitted by the source
for which no acknowledgement has yet been received), all packets contain
one Maximum Segment Size (MSS) of data, and the congestion window is
expressed in MSSs, then clock time tC and packet time tP are related by
dtP =WdtC , whereW denotes the size of the congestion window. Stationary
distributions for “packet time” and “clock time” are related but are not the
same. The relationship is given in [38].

2. Related work. When results like those in this paper are applied
to “classical TCP”, which has α = −1, β = 1, they predict throughput for
a (large) TCP flow in the order of 1/

√
p. This is called the “Square Root

Law” for TCP, and original papers in this area were often identified with
the Square Root Law for TCP.
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Work in this area started with [38], which among other things gives the
stationary distribution of the limit process in the case β = 1, and the re-
lationship between “packet time stationary distributions” and “clock time
stationary distributions”. The paper gives the stationary distribution of the
limit process Wp,n for p ↓ 0 and assumes the weak convergence results which
strictly speaking are not proven until [36] and this paper. That paper was
presented at a workshop of the IFIP WG7.3 during Performance 1996 in
Lausanne, Oct 1996 and also in a DIMACS workshop at Rutgers University
in Nov 1996.
Another paper of historical interest is [33] which was presented in a work-

shop at ENS, Paris 2000. That paper first explicitly formulated the conjec-
tures proven in this paper. In re–written form it appeared as [34].
In a non-distributional sense some of the results had been anticipated in

[25].
The first papers identified with the “square root law” that made it into

the open literature were [27], [41], [32], [42], [1] and [21].
Of these, [32] is the first to use the language of stochastic differential

equations. It uses clock time, and assumes that the probability of a drop in
a RTT is independent of the size of the congestion window, i.e. the drop–
probability per packet is roughly inversely proportional to the size of the
window.
An extensive bibliography and discussion of previous work is found in [16],

which, among other things, studies the effect of a congestion window limited
by a send window or receive window (through the advertised window).
The first papers to use “clock time” are [32] and [1]. Other papers that

use clock time are [17] and [20].
Another paper of particular interest is [15], which uses stochastic differen-

tial equations, in clock time, to study joint evolution of RTT and congestion
window size. The parameters of the two–dimensional stochastic differential
equation are obtained from measurements in the Internet, not from postu-
lating a particular behavior of sources and routers.
Other papers we want to mention are [4], where (as in [15]) the RTT

depends on the flightsize, [2], which is an ambitious attempt to build an all–
encompassing model where many flows keep each others’ RTTs and drop
probabilities in equilibrium, [3], which analyzes the performance of Scalable
TCP (α = 0, β = 1), [26], [7], [8], [6], [5], [10] and [9].
The papers [40], [28], [11], [13], [12], [29], [30], [14], [31] use “Square Root

Law Results” and do analysis with, for example, drop probabilities that
depend on the current size of the congestion window. That dependence is
by assuming ECN and is evaluated by translating flightsize in queuelength
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in the router.
The conjectures proven in this paper are formulated in [34], which also

obtains a number of other results, linked to “practicality” of control schemes,
such as relaxation times, typical numbers of dropped or marked packets per
RTT, etc.
An alternative proof of the stationarity of the processes (Wp,n)

∞
n=0 studied

in this paper is given in [39].
For a more complete review of the literature, see [16].
Of possible future interest is [35] which makes a start with investigating

the impact of delay of one RTT in the feedback on stability of the Internet,
and [37] which studies the transient behavior of the limit process in the case
β = 1, and thus, in so far the limit results apply, can be used to predict the
amount of clock time it takes to ftp a very large file.

3. Main Results. We first consider the case β = 1 and begin by cata-
loging some properties of the limit process Z.

Lemma 3.1. If Z(0) > 0 a.s., then the stochastic differential equation
(1.9) has a unique solution Z. With probability one, Z(t) > 0 for all t ≥ 0.
Moreover, if τ = inf{t ≥ 0 : Z(t) = c0}, where c0 is given by (1.14), then
τ <∞ a.s.

Proof. For each realization of the Poisson process, (1.9) can be solved de-
terministically and the solution is unique. Let

T = inf{t ≥ 0 : Z(t) /∈ (0,∞)}.

Since Z decreases only at the jump times of the Poisson process, and, with
probability one, these jump times have no accumulation points, it follows
that T =∞ a.s.
To show that τ < ∞ a.s., it will suffice to assume that Z(0) = x > 0

is deterministic. We first consider the case x ≤ c0. Suppose τ(ω) = ∞.
Then Z(t, ω) < c0 for all t ≥ 0. Find u > r such that u − r > γc−12 and
N(u, ω) = N(r, ω). Then for all t ∈ (r, u],

Z(t, ω) = Z(r, ω) + c1

∫ t

r
Z(s, ω)α ds.

Since the solution to this integral equation is unique,

Z(t, ω) = (c1(1− α)(t− r) + Z(r, ω)
1−α)γ .

Therefore,
c0 > Z(u, ω) > (c1(1− α)(u− r))

γ > c0,
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a contradiction. Hence, τ <∞ a.s.
We next consider the case x > c0. Define

σ1 = inf{t ≥ 0 : Z(t) < c0} and σ2 = inf{t ≥ σ1 : Z(t) = c0},

so that τ ≤ σ2, and it will suffice to show that σ2 < ∞ a.s. Fix L > x

and define ρ = inf{t ≥ 0 : Z(t) /∈ [c0, L]}. Suppose ρ(ω) = ∞. Then
Z(t, ω) ∈ [c0, L] for all t ≥ 0. Let

K = inf{uα : c0 ≤ u ≤ L} > 0.

Find u > r such that u− r > (L− c0)/(c1K) and N(u, ω) = N(r, ω). Then

L ≥ Z(u, ω) = Z(r, ω) + c1

∫ u

r
Z(s, ω)α ds ≥ c0 + c1(u− r)K > L,

a contradiction. Hence, ρ <∞ a.s.
Now, observe that

Z(t ∧ ρ) = x+
∫ t∧ρ

0
(c1Z(s)

α − c2Z(s)) ds− c2

∫ t∧ρ

0
Z(s−) dM(s),

where M(t) = N(t) − t is the compensated Poisson process. If s < t ∧ ρ,
then Z(s) ≥ c0 = (c1/c2)γ . This implies that c1Z(s)α−c2Z(s) ≤ 0. SinceM
is a martingale, E[Z(t ∧ ρ)] ≤ x. Letting t → ∞ gives E[Z(ρ)] ≤ x. Hence,
P (Z(ρ) = L) ≤ x/L. Note that either Z(ρ) = L or Z(ρ) < c0. Therefore,

P (σ1 =∞) ≤ P (Z(ρ) = L) ≤ x/L.

Letting L→∞ shows σ1 <∞ a.s.
As in Theorem V.6.35 in [43], Z is a strong Markov process. Therefore,

P (σ2 =∞) = E[P
Z(σ1)(τ =∞)].

But Z(σ1) < c0, and we have already shown that P
x(τ = ∞) = 0 for all

x ≤ c0. Hence, σ2 <∞ a.s. 2

We are now prepared to state our main results for the case β = 1. If μp
and μ are Borel measures on a metric space S, then the notation μp ⇒ μ will
mean that μp converges weakly to μ as p → 0, that is,

∫
S f dμp →

∫
S f dμ

as p→ 0 for all bounded, continuous f : S → R. If Xp and X are S-valued
random variables, then Xp ⇒ X will mean that PX−1p ⇒ PX−1. When Xp
and X are processes, we will take our metric space to be DRd [0,∞), the
space of cadlag functions from [0,∞) to Rd, with the Skorohod metric. See
[18] for details.
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Theorem 3.2. Suppose β = 1. Let the processes Zp be given by (1.8)
and suppose that Zp(0) ⇒ Z(0), where Z(0) > 0 a.s. Let Z be the unique
solution to (1.9). Then Zp ⇒ Z.

Theorem 3.3. Suppose β = 1 and ` > 0. Then the Markov chain {Wn}
has a unique stationary distribution. Moreover, the process Z given by (1.9)
has a unique stationary distribution η on (0,∞). For each p > 0, let ηp be
the stationary distribution for the Markov chain {pγWn}. Then ηp ⇒ η.

For some results on stationary distributions in the case β = 1 and ` = 0,
see [36] and [39].
For the case β < 1, we need some preliminary definitions. Assume that

for all p ∈ (0, 1), the processes {Wp,n} are defined on the same probability
space (Ω,F , P ). Define the σ-algebra

(3.1) F0 = σ(Wp,0 : 0 < p < 1) ∨N ,

where N denotes the collection of events D ∈ F with P (D) = 0.

Theorem 3.4. Suppose β < 1. Let the processes Zp be given by (1.8).
Suppose that Zp(0)⇒ ζ(0), where ζ(0) > 0 a.s. Let ζ the unique solution to
(1.10). Then Zp ⇒ ζ. Moreover, if Zp(0)→ ζ(0) in probability, then Zp → ζ

in probability.

Theorem 3.5. Suppose β < 1. Let the processes Zp be given by (1.8).
For each p ∈ (0, 1), let ζp(0) be a strictly positive random variable defined
on (Ω,F , P ). Assume that ζp(0) is F0-measurable and Zp(0)− ζp(0)→ 0 in
probability. Define ζp and ξp by (1.11) and (1.12), respectively.
Suppose that there exists a pair of random variables (ξ(0), ζ(0)), defined

on (Ω,F , P ), such that ζ(0) > 0 a.s. and (ξp(0), ζp(0)) ⇒ (ξ(0), ζ(0)). Let
B be a standard Brownian motion independent of (ξ(0), ζ(0)) and define the
processes ζ and ξ by (1.10) and (1.13), respectively. Then (ξp, ζp)⇒ (ξ, ζ).

Theorem 3.6. Suppose β < 1. Then the Markov chain {Wn} has a
unique stationary distribution. For each p > 0, let ηp be the stationary dis-
tribution for the Markov chain {p−τ (pγWn − cp)}. Then ηp ⇒ η, where η is
the stationary distribution of the Ornstein-Uhlenbeck process given by (1.15).

4. General Definitions. Define

Λn = (`−Wn−1 − c1W
α
n−1(1− χn) + c2W

β
n−1χn) ∨ 0,
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so that

Wn+1 =Wn + c1W
α
n − (c1W

α
n + c2W

β
n )χn+1 + Λn+1.

If we let W (t) = Wbtc, then we can rewrite this recursive relation as the
integral equation

W (t) =W (0) + c1

∫ t

0
W (s−)α dm(s)

−
∫ t

0
(c1W (s−)

α + c2W (s−)
β) dS(s) + L(t),

where

m(t) = btc, S(t) =
btc∑

j=1

χj , and L(t) =

btc∑

j=1

Λj .

Using (1.8), it is then easy to see that

Zp(t) = Zp(0) + c1

∫ t

0
Zp(s−)

α dmp(s)

− c1p
∫ t

0
Zp(s−)

α dSp(s)− c2

∫ t

0
Zp(s−)

β dSp(s) + Lp(t),

(4.1)

where

mp(t) = p
νm(tp−ν), Sp(t) = p

ν−1S(tp−ν), and Lp(t) = p
γL(tp−ν).

Note that if we define the filtration

Fpt = F0 ∨ σ(χp,j : j ≤ btp
−νc),

then mp, Sp, and Lp are all {F
p
t }-adapted.

Define the R2-valued cadlag {Fpt }-semimartingale

Yp = (mp, Sp)
T

and define the function Gp : R2 → R by

Gp(x) = (c1x
α,−c1px

α − c2x
β)1{x>0}.

Then (4.1) becomes

Zp(t) = Zp(0) +

∫ t

0
Gp(Zp(s−)) dYp(s) + Lp(t).
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To show that Zp converges as p → 0, we will apply the theorems in [24].
This approach, however, comes with two technical difficulties. The first is
the presence of the local time term Lp; the second is the fact that Gp may
have a singularity at the origin. To deal with these issues, we introduce the
process Zεp , defined as the unique solution to

(4.2) Zεp(t) = Zp(0) +

∫ t

0
Gεp(Z

ε
p(s−)) dYp(s),

where Gεp = Gp(ε)1(−∞,ε)+Gp1[ε,∞). To quantify the sense in which Zp and
Zεp are close, we define the functional hε : DRd [0,∞)→ [0,∞] by

hε(x) = inf{t ≥ 0 : |x(t)| ∧ |x(t−)| ≤ ε},

and the stopping times τp(ε) = hε(Z
ε
p), and we observe that

(4.3) Lp = 0 and Zp = Z
ε
p on [0, τp(ε ∨ p

γ`)).

By (3.5.2) in [18], if two cadlag functions x and y agree on the interval [0, t),
then d(x, y) ≤ e−t, where d is the metric on DRd [0,∞).

5. Convergence of Zp. In this section, we will prove Theorems 3.2
and 3.4 by applying the theorems in [24] to the processes Zεp given by (4.2).
We must therefore define the processes to which they converge in the cases
β = 1 and β < 1.
Let G(x) = (c1x

α,−c2xβ)1{x>0} and G
ε = G(ε)1(−∞,ε) + G1[ε,∞), and

note that Gεp → Gε uniformly on compacts as p → 0. Let N be a unit rate
Poisson process, define

Y (t) = (t,N(t))T and y(t) = (t, t)T ,

and let Zε and ζε be the unique solutions to

Zε(t) = Z(0) +

∫ t

0
Gε(Zε(s−)) dY (s),(5.1)

ζε(t) = ζ(0) +

∫ t

0
Gε(ζε(s−)) dy(s),(5.2)

where Z(0) and N are independent. Note that if β = 1, then Zε = Z on
[0, hε(Z

ε)) and hε(Z
ε) = hε(Z) → ∞ a.s. as ε → 0. Hence, d(Zε, Z) ≤

exp(−hε(Z))→ 0 a.s. That is, Zε → Z a.s. in DR[0,∞). Similarly, if β < 1,
then ζε = ζ on [0, hε(ζ

ε)), hε(ζ
ε) = hε(ζ) → ∞ a.s., and ζε → ζ a.s. in

DR[0,∞).
We will show that Zεp ⇒ Zε and ζεp ⇒ ζε. To pass from this to the

conclusions of Theorems 3.2 and 3.4, we will need the following lemma,
which is easily proved using the Prohorov metric. (See Section 3.1 in [18].)
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Lemma 5.1. Let (S, d) be a complete and separable metric space. Let
{Xp}p>0 be a family of S-valued random variables and suppose, for each ε,
there exists a family {Xεp}p>0 such that

lim sup
p→0

E[d(Xp, X
ε
p)] ≤ δε,

where δε → 0 as ε → 0. Suppose also that for each ε, there exists Y ε such
that Xεp ⇒ Y ε as p → 0. Then there exists X such that Xp ⇒ X and
Y ε ⇒ X.

Proof of Theorem 3.2. Suppose β = 1, Zp is given by (1.8), and Zp(0)⇒
Z(0), where Z(0) > 0 a.s. Let Z be the solution to (1.9).
Let Zεp and Z

ε be given by (4.2) and (5.1). We first show that Zεp ⇒ Zε.
Recall that Gεp → Gε uniformly on compacts. Also observe that Sp ⇒ N (see,
for example, Problem 7.1 in [18]). Hence, since Zp(0) and Yp are independent,
(Zp(0), Yp)⇒ (Z(0), Y ) in DR3 [0,∞). Hence, by Theorem 5.4 in [24], it will
suffice to show that Yp has a semimartingale decomposition Yp = Mp + Ap
into a martingale part and a bounded variation part such that for each t ≥ 0,

(5.3) sup
p
E[[Mp]t + Tt(Ap)] <∞,

where [Mp]t is the quadratic variation process of Mp and Tt(Ap) is the total
variation of Ap on the interval [0, t].
For this, define

S̃p(t) = Sp(t)−mp(t) = p
ν−1

btp−νc∑

j=1

(χj − p),

so that S̃p is an {F
p
t }-martingale. Note that Tt(mp) = mp(t) and

(5.4) E[S̃p]t = p
2ν−2

btp−νc∑

j=1

E|χj − p|
2 = p2ν−2btp−νcp(1− p) ≤ tpν−1.

Since β = 1 implies ν = 1, this verifies (5.3) and shows that Zεp ⇒ Zε.
By passing to a subsequence, we can assume there exists a [0,∞]-valued

random variable σ(ε) such that (Zεp , hε(Z
ε
p))⇒ (Z

ε, σ(ε)). By (4.3),

lim sup
p→0

E[d(Zp, Z
ε
p)] ≤ lim sup

p→0
E[exp(−τp(ε ∨ p

γ`))]

= lim sup
p→0

E[exp(−hε(Z
ε
p))]

= E[exp(−σ(ε))].
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We claim that E[exp(−σ(ε))] ≤ E[exp(−hε(Zε))]. To see this, let us assume
by the Skorohod Representation Theorem (see Theorem 3.1.8 in [18]) that
(Zεp , hε(Z

ε
p)) → (Z

ε, σ(ε)) a.s. Then hε(Z
ε) ≤ σ(ε) a.s., which proves the

claim.
Since hε(Z

ε) = hε(Z) → ∞ a.s. as ε → 0, we can apply Lemma 5.1 to
conclude that Zp ⇒ Z. 2

Proof of Theorem 3.4. Suppose β < 1, Zp is given by (1.8), and Zp(0)⇒
ζ(0), where ζ(0) > 0 a.s. Let ζ be the solution to (1.10).
Note that β < 1 implies ν > 1. Hence, (5.4) implies that (5.3) is satisfied

and S̃p → 0 in probability. Therefore, (Zp(0), Yp)⇒ (Z(0), y) in DR3 [0,∞).
By Theorem 5.4 in [24], Zεp ⇒ ζε. By Corollary 5.6 in [24], if Zp(0) →
ζ(0) in probability, then Zεp → ζε in probability. By the same argument as
above, this implies that Zp converges to ζ in distribution or in probability,
respectively. 2

6. Fluctuations of Zp. In this section, we prove Theorem 3.5. Let us
first recall the setting of that theorem. We have β < 1 and Zp given by
(1.8). Recall that the processes Zp are all defined on the same probability
space (Ω,F , P ). For each p > 0, ζp(0) is an F0-measurable random variable,
where F0 is given by (3.1), such that ζp(0) > 0 a.s. and Zp(0) − ζp(0) → 0
in probability. The processes ζp and ξp are then given by (1.11) and (1.12).
To apply the theorems in [24], we wish to write ξp as the solution to a

stochastic differential equation. By (1.11) and (4.1), we have

ξp(t) = ξp(0) + c1(1− p)
∫ t

0
p−τ (Zp(s−)

α − ζp(s)
α) dmp(s)

− c2

∫ t

0
p−τ (Zp(s−)

β − ζp(s)
β) dSp(s)

− c2

∫ t

0
ζp(s)

β dBp(s) +Rp(t),

(6.1)

where

Bp(t) = p
−τ (Sp(t)−mp(t)) = p

(ν−1)/2
btp−νc∑

j=1

(χj − p)

and

Rp(t) = p
−τ
∫ t

0
(c1(1− p)ζp(s)

α − c2ζp(s)
β) d(mp(s)− s)

− c1p
∫ t

0
Zp(s−)

α dBp(s) + p
−τLp(t).

(6.2)
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Given a real number r, let us define the continuous function Fr : (0,∞)2 → R
by

Fr(x, y) =
xr − yr

x− y
1{x 6=y} + ry

r−11{x=y}.

Using this, (6.1) becomes

ξp(t) = ξp(0) + c1(1− p)
∫ t

0
ξp(s−)D

α
p (s−) dmp(s)

− c2

∫ t

0
ξp(s−)D

β
p (s−) dSp(s)− c2

∫ t

0
ζp(s)

β dBp(s) +Rp(t),

(6.3)

where Drp = Fr(Zp, ζp).

Proof of Theorem 3.5. Suppose that there exists a pair of random vari-
ables (ξ(0), ζ(0)), defined on (Ω,F , P ), such that ζ(0) > 0 a.s. and (ξp(0), ζp(0))⇒
(ξ(0), ζ(0)). By the Skorohod representation theorem (see, for example, The-
orem 2.1.8 in [18]), we can assume without loss of generality that (ξp(0), ζp(0))→
(ξ(0), ζ(0)) a.s. Since the map that takes a point x > 0 to the unique so-
lution to (1.11) with ζp(0) = x is continuous, ζp → ζ in probability and
(ξp(0), ζp) ⇒ (ξ(0), ζ). Also, since Fr is continuous, Drp → rζ(∙)r−1 in prob-
ability.
Let

Up(t) = ξp(0)− c2

∫ t

0
ζp(s)

β dBp(s) +Rp(t), and

Yp(t) = c1(1− p)
∫ t

0
Dαp (s−) dmp(s)− c2

∫ t

0
Dβp (s−) dSp(s),

so that (6.3) becomes

(6.4) ξp(t) = Up(t) +
∫ t

0
ξp(s−) dYp(s).

We will apply the theorems in [24] to this integral equation.
We first show that Rp → 0 in probability. By the Martingale Central

Limit Theorem (Theorem 7.1.4 in [18]), Bp ⇒ B, where B is a standard
Brownian motion; by Theorem 3.4, Zp → ζ in probability; and by (5.4),
{Bp} satisfies (5.3). Hence, by Theorem 2.2 in [24],

c1p

∫ t

0
Zp(s−)

α dBp(s)→ 0

in probability. By (4.3), p−τLp = 0 on [0, hpγ`(Zp)). Since hpγ`(Zp)→∞ in
probability, p−τLp → 0 in probability.
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For the final term in (6.2), note that p−τ |mp(t) − t| ≤ pν−τ and ν −
τ = (ν + 1)/2 > 0. Hence, p−τ (mp(t) − t) → 0 uniformly. Let fp(s) =
c1(1 − p)ζp(s)

α − c2ζp(s)
β . Since ζp → ζ in probability, we can pass to a

subsequence and assume that ζp → ζ uniformly on [0, t], a.s. By (1.11), this
implies that ζ ′p → ζ ′ uniformly on [0, t]. Hence, fp and f

′
p converge uniformly.

Integrating by parts, we have

p−τ
∫ t

0
fp(s) d(mp(s)− s) = p

−τfp(t)(mp(t)− t)

− p−τ
∫ t

0
(mp(s)− s)f

′
p(s) ds,

which goes to zero uniformly and completes the proof that Rp → 0 in prob-
ability.
It now follows from Theorem 5.2 in [24] that (Up,Yp, ζp) ⇒ (U ,Y, ζ),

where

U(t) = ξ(0)− c2

∫ t

0
ζ(s)β dB(s), and

Y(t) = c1

∫ t

0
αζ(s)α−1 ds− c2

∫ t

0
βζ(s)β−1 ds,

and B is a standard Brownian motion independent of (ξ(0), ζ(0)). By Re-
mark 2.5 in [24], we may apply Theorem 5.4 in [24] to (6.4) and conclude
that (ξp, ζp)⇒ (ξ, ζ), where ξ is the unique solution to (1.13). 2

7. Stationary Distributions. In this section, we prove Theorems 3.3
and 3.6. For this, we make time continuous in a slightly different manner
than before. Let N be a unit rate Poisson process independent of {Wn} and
let X(t) =WN(t). Then X is a continuous time Markov chain on E = [`,∞)
with generator

Aϕ(x) = p(ϕ(x− g(x))− ϕ(x)) + (1− p)(ϕ(x+ c1x
α)− ϕ(x)),

where g(x) = (c2x
β) ∧ (x− `). When β = 1, we will study the process

Ẑp(t) = p
γX(tp−1),

whereas when β < 1, we will consider

ξ̂p(t) = p
−τ (pγX(tp−ν)− cp),

where cp is given by (1.14). It is easy to see that a probability measure is a
stationary distribution for {pγWn} or {p−τ (pγWn − cp)} if and only if it is
a stationary distribution for Ẑp or ξ̂p, respectively.
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Lemma 7.1. If ` > 0, then {Wn} has a unique stationary distribution.

Proof. It will suffice to show that X has a unique stationary distribution.
Let ϕ(x) = x so that

Aϕ(x) = −pg(x) + (1− p)c1x
α.

Since g(x) = c2x
β for x sufficiently large, Aϕ is bounded above and Aϕ(x)→

−∞ as x→∞. By Lemmas 4.9.5 and 4.9.7 in [18], the family of probability
measures {μt}t≥1 defined by

μt(Γ) =
1

t

∫ t

0
P x(X(s) ∈ Γ) ds

is relatively compact. By Theorem 4.9.3 in [18], any subsequential weak limit
of {μt} is a stationary distribution for X.
To show that the stationary distribution is unique, it will suffice to show

that for all x ∈ E,

τ = inf{t ≥ 0 : X(t) = `} <∞, P x-a.s.

(See, for example, Problem 4.36 in [18].) Let x ∈ E be arbitrary and let
ε > 0. Choose M such that μt([`,M ]) ≥ 1− ε for all t ≥ 0. Note that there
exists K > 0 such that P y(τ <∞) ≥ K for all y ∈ [`,M ].
Define the stopping times τ0 = 0 and

τj+1 = inf{t ≥ τj + 1 : X(t) ≤M},

and note that τj →∞ a.s. By the strong Markov property,

P (τ =∞, τj <∞) = E[1{τ≥τj ,τj<∞}P
X(τj)(τ =∞)]

≤ (1−K)P (τ ≥ τj , τj <∞)

Letting j →∞ shows that P ({τ =∞}∩D) = 0, where D is the event that
τj <∞ for all j. Note that

1Dc ≤ lim inf
t→∞

1

t

∫ t

0
1{X(s)>M} ds.

Hence, by Fatou’s Lemma, P (Dc) ≤ lim inft→∞ μt((M,∞)) ≤ ε. Therefore,
P (τ = ∞) = P ({τ = ∞} ∩Dc) ≤ ε. Since ε was arbitrary, τ < ∞ P x-a.s.
and the stationary distribution is unique. 2
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Proof of Theorem 3.3. In what follows, C and K will denote strictly
positive, finite constants that do not depend on p and may change value
from line to line.
Suppose β = 1, ` > 0, and ηp is the stationary distribution for {pγWn}.

Then ηp is the stationary distribution for Ẑp, which is a continuous time
Markov chain on Ep = [p

γ`,∞) with generator

Apϕ(x) = ϕ(x− p
γg(p−γx))− ϕ(x)

+ p−1(1− p)(ϕ(x+ pc1x
α)− ϕ(x)).

Let ϕ(x) = x+ x−1, so that

Apϕ(x) = −p
γg(p−γx) + (1− p)c1x

α

+
pγg(p−γx)

x(x− pγg(p−γx))
−
(1− p)c1xα

x(x+ pc1xα)
.

Since x 7→ 1 + pc1xα−1 is decreasing,

1 + pc1x
α−1 ≤ 1 + pc1(p

γ`)α−1 = 1 + c1`
α−1

for all x ∈ Ep. Hence,

Apϕ(x) ≤ −p
γg(p−γx) + Cxα +

pγg(p−γx)

x(x− pγg(p−γx))
−Kxα−2

whenever p < 1/2.
If x ≥ pγ`/(1− c2), then g(p−γx) = c2p−γx and

Apϕ(x) ≤ −Kx+ Cx
α + Cx−1 −Kxα−2.

If x < pγ`/(1− c2), then g(p−γx) = p−γx− ` and

Apϕ(x) ≤ Cx
α +

x− pγ`
xpγ`

−Kxα−2 ≤ Cxα + (pγ`)−1 −Kxα−2.

But in this case, (pγ`)−1 < Cx−1. It therefore follows that

Apϕ(x) ≤ C −Kx−Kx
α−2

for all x ∈ Ep.
Let ε > 0. Define

L = sup
p<1/2

sup
x∈Ep

Apϕ(x) <∞
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and let m = L(1 − ε)/ε. Choose M > 0 such that x /∈ [M−1,M ] implies
Apϕ(x) < −m for all p < 1/2. By Corollary 4.9.8 in [18],

ηp([M
−1,M ]) ≥ ηp({x : Apϕ(x) ≥ −m}) ≥

m

L+m
= 1− ε.

The family of measures {ηp} is therefore relatively compact on (0,∞). By
passing to a subsequence, we can assume that ηp ⇒ η for some probability
measure η on (0,∞).
Now let pγW0 have distribution ηp and let Zp be given by (1.8). By

Theorem 3.2, Zp ⇒ Z, where Z satisfies (1.9) with PZ(0)−1 = η. Fix
t1 ≤ ∙ ∙ ∙ ≤ tn. Then

(Zp(t1), . . . , Zp(tn)) = p
γ(Wbt1p−1c, . . . ,Wbtnp−1c)

d
= pγ(W0,Wbt2p−1c−bt1p−1c, . . . ,Wbtnp−1c−bt1p−1c)

= (Zp(0), Zp(t2 − t1), . . . , Zp(tn − t1)) + ε,

where εj = Zp(hj) − Zp(tj − t1) and hj = (btjp−1c − bt1p−1c)p. Note that
hj → tj − t1 as p → 0 and, for fixed t, Z is almost surely continuous at t.
Hence, ε→ 0 a.s., which gives

(Zp(t1), . . . , Zp(tn))⇒ (Z(0), Z(t2 − t1), . . . , Z(tn − t1)).

But
(Zp(t1), . . . , Zp(tn))⇒ (Z(t1), . . . , Z(tn)),

so Z is a stationary process, and η is a stationary distribution for Z. The
uniqueness of η follows from Lemma 3.1. 2

For the proof of Theorem 3.6, note that ξ̂p is a continuous time Markov
chain on Ep = [p

−τ (pγ`− cp),∞) with generator

Apϕ(x) = p
−ν+1(ϕ(x− pγ−τg(pτ−γx+ p−γcp))− ϕ(x))

+ p−ν(1− p)(ϕ(x+ pγ−τ c1(p
τ−γx+ p−γcp)

α)− ϕ(x)).
(7.1)

We will use the same argument as in the proof of Theorem 3.3, this time
using the Lyapunov function ϕ(x) = |x|r, where r is sufficiently large. Our
key estimate on Apϕ(x) is given in the following lemma and is valid as long
as |x| is not too large.

Lemma 7.2. Suppose β < 1. Let ϕ(x) = |x|r, where r ≥ 2, and let Ap be
given by (7.1). Let 0 < δ < M < ∞ be arbitrary. Then there exists p0 > 0
and strictly positive, finite constants C and K such that

Apϕ(x) ≤ C −K|x|
r

for all p ≤ p0 and all x ∈ Ep satisfying δ ≤ pτx+ cp ≤M .
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Proof. For notational simplicity, let us define yp(x) = p
τx+ cp so that

Apϕ(x) = p
−ν+1(ϕ(x− pγ−τg(p−γyp))− ϕ(x))

+ p−ν(1− p)(ϕ(x+ pγ−τ c1(p
−γyp)

α)− ϕ(x)).

Either g(x) = c2x
β or g(x) < c2x

β . Note that there exists x0 > ` such that
g(x) = c2x

β if and only if x ≥ x0. Hence, if g(p
−γyp) < c2(p

−γyp)
β , then

p−γyp < x0, which implies x < p−τ (pγx0 − cp). If p is sufficiently small, this
implies x < 0. Since ϕ is decreasing on (−∞, 0], it follows that

Apϕ(x) ≤ p
−ν+1(ϕ(x− pγ−τ−γβc2y

β
p )− ϕ(x))

+ p−ν(1− p)(ϕ(x+ pγ−τ−γαc1y
α
p )− ϕ(x))

for all x ∈ Ep.
Observe that

|ϕ(z)− ϕ(x)− ϕ′(x)(z − x)| =
∣
∣
∣
∣

∫ z

x
(z − u)ϕ′′(u) du

∣
∣
∣
∣

≤ C|z − x|2(|x|r−2 + |z|r−2)

≤ C|x|r−2|z − x|2 + C|z − x|r.

Hence,

Apϕ(x) ≤ −ϕ
′(x)p−τ (p−ν+1+γ−γβc2y

β
p − p

−ν+γ−γαc1(1− p)y
α
p )

+ C|x|r−2(p−ν+1+2γ−2τ−2γβc22y
2β
p + p

−ν+2γ−2τ−2γαc21y
2α
p )

+ C(p−ν+1+rγ−rτ−rγβcr2y
rβ
p + p

−ν+rγ−rτ−rγαcr1y
rα
p ).

We can simplify these exponents by observing that

−ν + γ − γα = 0

−ν + 1 + γ − γβ = 0

−ν + 2γ − 2τ − 2γα = 1

−ν + 1 + 2γ − 2τ − 2γβ = 0

−ν + 1 + rγ − rτ − rγβ = τ(r − 2)

−ν + rγ − rτ − rγα = r − 1 + τ(r − 2).

Thus,

Apϕ(x) ≤ −ϕ
′(x)p−τ (c2y

β
p − c1(1− p)y

α
p ) + C|x|

r−2(y2βp + py
2α
p )

+ C(pτ(r−2)yrβp + p
r−1+τ(r−2)yrαp ).
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Since ϕ′(x) and c2y
β
p − c1(1− p)y

α
p have the same sign, this gives

Apϕ(x) ≤ −r|x|
r−1p−τ |c2y

β
p − c1(1− p)y

α
p |+ C|x|

r−2(y2βp + py
2α
p )

+ C(pτ(r−2)yrβp + p
r−1+τ(r−2)yrαp )

(7.2)

for all x ∈ Ep.
If r ≥ 2 and δ ≤ yp ≤M , then

Apϕ(x) ≤ −r|x|
r−1p−τ c2y

α
p |y
β−α
p − cβ−αp |+ C|x|r−2 + C.

By the Mean Value Theorem,

ψp(x) ≤ −K|x|
r−1p−τ |yp − cp|+ C|x|

r−2 + C

= −K|x|r + C|x|r−2 + C,

which completes the proof. 2

The following two lemmas provide the needed estimates on Apϕ in the
extreme regimes.

Lemma 7.3. Suppose β < 1. Let ϕ(x) = |x|r, where r ≥ 2, and let Ap be
given by (7.1). Then there exists p0 > 0, M <∞ and K > 0 such that

Apϕ(x) ≤ −K|x|
(r−1)∧(r−1+β)

for all p ≤ p0 and all x ∈ Ep satisfying pτx+ cp > M .

Proof. Let p ≤ p0 and yp = pτx+ cp > M . If p0 is sufficiently small and M
is sufficiently large, then x ≥ Kp−τ and yp ≤ x. By (7.2),

Apϕ(x) ≤ −K|x|
r−1yβp + C|x|

r−2y2βp + Cy
rβ
p

= −|x|r−1yβp (K − C|x|
−1yβp − C|x|

−r+1yβ(r−1)p ).

If β ≤ 0, then for p sufficiently small,

Apϕ(x) ≤ −|x|
r−1yβp (K − C|x|

−1 − C|x|−r+1) ≤ −K|x|r−1+β .

If β > 0, then

Apϕ(x) ≤ −|x|
r−1yβp (K − C|x|

β−1 − C|x|(β−1)(r−1)),

so for p sufficiently small, Apϕ(x) ≤ −K|x|r−1yβp ≤ −K|x|
r−1. 2
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Lemma 7.4. Suppose β < 1. Let ϕ(x) = |x|r, where r ≥ 2, and let Ap be
given by (7.1). Then there exists p0 > 0, δ > 0 and K > 0 such that

Apϕ(x) ≤ −K|x|
r∧(r−2α/(1−β))

for all p ≤ p0 and all x ∈ Ep satisfying pτx+ cp < δ.

Proof. Let p ≤ p0 and yp = pτx+ cp < δ. Note that since x ∈ Ep, yp ≥ pγ`.
If p0 and δ are sufficiently small, then x < 0 and Kp

−τ ≤ |x| ≤ Cp−τ . By
(7.2), for δ sufficiently small,

Apϕ(x) ≤ −|x|
ryαp (K|y

β−α
p − cβ−αp | − C(p2τy2β−αp + p2τ+1yαp )

− C(pτr+τ(r−2)yrβ−αp + pτr+r−1+τ(r−2)yrα−αp ))

≤ −|x|ryαp (K − C(p
2τy2β−αp + p2τ(r−1)yrβ−αp )

− C(p2τ+1yαp + p
(2τ+1)(r−1)yα(r−1)p )).

Let us first estimate the term p2τy2β−αp . If 2β−α ≥ 0, then p2τy2β−αp ≤ Cp2τ .
If 2β − α < 0, then p2τy2β−αp ≤ Cp2τ+γ(2β−α). Note that 2τ + γ(2β − α) =
γ + 1. Hence, for all values of α and β, there exists some s > 0 such that
p2τy2β−αp ≤ ps.
Similarly, for the remaining terms in the above inequality, we observe that

2τ(r − 1) + γ(rβ − α) = (2τ + γβ)(r − 1) + 1 = γ(r − 1) + 1

2τ + 1 + γα = γ

(2τ + 1)(r − 1) + γα(r − 1) = γ(r − 1).

Therefore, if p0 is sufficiently small, then Apϕ(x) ≤ −K|x|ryαp . If α < 0,
then Apϕ(x) ≤ −K|x|r. If α ≥ 0, then

Apϕ(x) ≤ −K|x|
rpγα ≤ −K|x|r−γα/τ .

Since γα/τ = 2α/(1− β), this completes the proof. 2

Proof of Theorem 3.6. Suppose β < 1 and ηp is the stationary distribution

for {p−τ (pγWn − cp)}. Then ηp is the stationary distribution for ξ̂p. Let
ϕ(x) = |x|r, where r ≥ 2. By Lemmas 7.2, 7.3, and 7.4, if r is sufficiently
large, there exists p0 > 0 and strictly positive, finite constants C and K
such that

Apϕ(x) ≤ C −K|x|
s

for some s > 0 and all p ≤ p0 and x ∈ Ep. As in the proof of Theorem 3.3,
this implies that the family of measures {ηp} is relatively compact on R. By
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passing to a subsequence, we can assume that ηp ⇒ η for some probability
measure η on R.
Let p−τ (pγW0−cp) have distribution ηp, let Zp be given by (1.8), and let ξp

be given by (1.12) with ζp ≡ cp. Note that ξp(0) converges in distribution, so
pτξp(0) = Zp(0)− ζp(0)→ 0 in probability. Hence, by Theorem 3.5, ξp ⇒ ξ,
where ξ satisfies (1.15) with Pξ(0)−1 = η. As in the proof of Theorem 3.3,
ξ is a stationary process, so η is the stationary distribution for ξ. 2
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