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Abstract

This note establishes stationarity of a number of stochastic processes of inter-

est in the study of Transport Protocols, and determines which moments of the

stationary distributions are finite. For many of the processes studied in this note

stationarity had been established before, but for one class the result is new. For

that class, it was counterintuitive that stationarity was hard to prove. This note

also explains why that class offered such stiff resistance.

The stationarity is proven using Liapunov functions, without first proving tight-

ness by proving boundedness of moments. A different method then uses these results

to prove existence of certain moments.

1 Introduction

The past 12 years has seen a large number of papers modeling aspects of TCP (Transport

Control Protocol) and TCP–like protocols. We mention [1, 2, 9] as examples of earlier

papers.
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An excellent overview of the literature in this field up to about 2004 can be found in

[10], and [8] gives a large (but almost by definition insufficient) number of references after

2004.

The paper [3] proposes a class of “TCP–like” Internet Transport Protocols and uses a

class of stochastic processes to analyze the performance of these protocols, in particular

the evolution over time of the window size. Over the past few years many results have been

proven for that class of processes, such as (in most cases) stationarity of the processes,

also in many cases weak convergence, if the drop probability goes to zero, of rescaled

versions of the window size processes to a limit process, and in that case convergence of

stationary distributions to the limiting stationary distribution, etc.

This note in a sense completes the picture. Stationarity of processes had been proven in

many, but not all, cases. Several different techniques were used to prove stationarity, often

involving proving boundedness of certain moments and thus tightness. Those methods

did not always work.

This note proves stationarity in all cases. It uses a single (different) method (Liapunov

functions, which bound expected return times to some compact set). For certain of those

stationary distributions this note also finds out exactly which moments are finite.

There is at least one minor but intriguing question left open. For one class of processes

existence of stationary distributions has been proven, but uniqueness of such a stationary

distribution has not been established yet. This, and other, open issues are discussed in

Section 8.

Some of the results in this note were presented at the 2006 MAMA workshop, and

appeared in abbreviated form in [6].
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2 The processes involved

The class of stochastic processes introduced in [3] is defined by:

Let (Un)∞n=0 be independent, identically distributed random variables, each distributed

uniformly [0, 1]. Let p be a probability, 0 < p < 1. Define the i.i.d. random variables χp,n

by

χp,n =











success if Un ≥ p

failure if Un < p
(2.1)

Further, let the discrete time, continuous state space process W ∗
α,p,C,n (n = 0, 1, 2, · · · ,

0 < W ∗
α,p,C,n < ∞, 0 < p < 1) be defined by

W ∗
α,p,C,n+1 =











W ∗
α,p,C,n + c1(W

∗
α,p,C,n)

α if χp,n = success,

max
(

W ∗
α,p,C,n − c2(W

∗
α,p,C,n)

β, C
)

if χp,n = failure,
(2.2)

where α < β ≤ 1, c1 > 0, c2 > 0, C > 0.

The special case with β = 1, α = −1, c1 = 1, c2 = 1
2

and (for example) C = 1 models

“classical TCP”.

The special case with β = 1, α = 0 models Tom Kelly’s “Scalable TCP”, see [13, 14].

[3] shows that the more general case, even the case 0 < α < β ≤ 1, is of interest in

the study of transport protocols.

[7] proves that for all values α < β ≤ 1, c1 > 0, c2 > 0, C > 0, 0 < p < 1 (and

0 < c2 < 1 if β = 1) the process W ∗
α,p,C,n has a unique stationary distribution. The

uniqueness of that stationary distribution (independent of W ∗
α,p,C,0) is derived from the

fact that eventually W ∗
α,p,C,n = C for some (possibly large) n.

[4] mainly studies the case α < β = 1, c1 > 0, 0 < c2 < 1. In that case we write

1 − c2 = b. In that case we can drop the “max (..., C)” in (2.2) (or choose C = 0). [4, 5]

also draw some conclusions, from the case “C = 0”, for the case “C > 0”.
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The process of main interest in that paper therefore is defined by

Wα,p,n+1 =











Wα,p,n + c1(Wα,p,n)
α if χp,n = success,

Wα,p,n − (1 − b)Wα,p,n = bWα,p,n if χp,n = failure.
(2.3)

but it also draws some conclusions for the process (W ∗∗
α,p,C,n)

∞
n=0 defined by

W ∗∗
α,p,C,n+1 =











W ∗∗
α,p,C,n + c1(W

∗∗
α,p,C,n)

α if χp,n = success,

max(bW ∗∗
α,p,C,n, C) if χp,n = failure.

(2.4)

By an abuse of notation we will often denote W ∗∗
α,p,C,n as W ∗∗

p,n and Wα,p,n as Wp,n, etc,

and when the parameter n is dropped we assume the random variable has the stationary

distribution.

[7] proves existence and uniqueness of the stationary distribution of the process

(W ∗
α,p,C,n)

∞
n=0 in the case C > 0. In addition, [4] proves existence and uniqueness of

stationary distributions in case (0 ≤ α < β = 1 and C = 0, 0 < c2 < 1). The results

in the latter paper can also be used (using the tightness proven in that paper) to prove

existence, but not uniqueness, of a stationary distribution in the case (α < 0, β = 1,

C = 0, 0 < c2 < 1 and 0 < p < 1 sufficiently small), see [5] for details.

The latter extra requirement, that p is sufficiently small, is counterintuitive: It “should”

be easier to prove stationarity for p close to one (therefore fewer successes, therefore (?)

Wα,p,n more likely to be small (?)) than for p close to zero. More on this topic later in

this paper.

[3, 4, 7] study rescaled versions of the processes described above. The cases β = 1

and β < 1 require different rescalings. [7] uses methods from [11] to obtain weak limit

results for the rescaled processes (weak convergence of processes to a limit process) if

p ↓ 0, in the cases β = 1 as well as β < 1. [4] concentrates on the case β = 1 and obtains

weak convergence results for stationary distributions of the rescaled processes, including
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stochastic dominance results and rate of convergence results. Both papers leave a gap in

the case β = 1, C = 0, α < 0.

This note fills the the gap in the analysis of stationarity: By an alternative method

(using Liapunov functions, and presented in the Sections 3–5 of this note) it proves sta-

tionarity in all cases (β < 1, C > 0) as well as (β = 1, C ≥ 0). However, the greater

generality comes at a cost: the proofs using Liapunov functions do not prove existence,

let alone boundedness, of the various moments of interest. This approach was presented

at the 2006 MAMA workshop, see [6].

The approach in [4] (basically) is to first prove, in the case β = 1, C = 0, tightness by

proving finiteness and boundedness of certain moments of the rescaled processes, and then

observe that the boundedness of moments implies existence of a stationary distribution.

The approach in the sections 3–5 of this note proves existence of stationary distributions

in all cases (β < 1, C > 0) and (β = 1, C ≥ 0) without obtaining insight in existence of

moments.

In the Sections 6 and 7 of this note stochastic dominance results from [4] are combined

with the proven stationarity to obtain necessary and sufficient conditions for existence of

moments of the stationary distribution of Wp in the case β = 1, C = 0.

The results in this note are formulated for the original processes W ∗
α,p,C,n (etc), not for

the rescaled processes. Translation is easy.

The method of proof in the Sections 3–5 of this note is to find a compact set [v1, v2]

and to prove that the “expected first return time” from W ∗
α,p,C,n (etc) leaving that set to

returning to that set is bounded. One of the results used is Theorem 12.3.4 on page 296

of [12].

In the case C > 0 we will choose v1 = C < v2 < ∞. In the case (β = 1, C = 0, 0 <

c2 < 1) we will choose 0 < v1 < v2 < ∞. In the old “holdout situation” α < 0 this is
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necessary to make the proof work.

3 The case β < 1, C > 0

Throughout this section we have β < 1, C > 0 and we choose v1 = C and v2 “large”,

to be described later. Among others we require that v2 is large enough to ensure that

w − c2w
β is increasing in w for w ≥ v2, that C + c1C

α < v2, and that w − c2w
β > C for

all w ≥ v2.

We will find a function (Liapunov function) V : [C,∞) → [0,∞) with the following

properties:

V (w) = 0 for C ≤ w ≤ v2,

V (w) ≥ 1 + (1 − p)V (w + c1w
α) + pV (w − c2w

β) for w > v2, (3.1)

and such that there is an upper bound B < ∞ with the property that

V (w + c1w
α) < B for all C ≤ w ≤ v2. (3.2)

(3.1) shows that V (w) is an upper bound for the Expected First Passage Time from

W ∗
α,p,C,n = w > v2 to W ∗

α,p,C,n+T ≤ v2. This is Theorem 11.3.4 on page 265 of [12]. (3.2)

then shows that the process (W ∗
α,p,C,n)

∞
n=0 has (at least one) stationary distribution. That

is Theorem 12.3.4 on page 296 of [12].

Once we have the results above, it is obvious that the expected first passage time from

“anywhere” to W ∗
α,p,C,n = C is finite. This then proves the uniqueness of the stationary

distribution.

We find w2 > v2 such, that w2−c2w
β
2 = v2. In fact, see below, one could say we choose

w2 large enough and then define v2 = w2 − c2w
β
2 . Then we choose the function V of the
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form

V (w) = ν + µw1−β for w > v2. (3.3)

Clearly, it now is sufficient to choose µ and ν such, that

µw1−β ≥ 1 + (1 − p)µ(w + c1w
α)1−β + pµ(1 − c2w

β)1−β for w ≥ w2 (3.4)

and

ν ≥
1

p
sup

v2<w<w2

(

1 + (1 − p)µ(w + c1w
α)1−β − µw1−β

)

. (3.5)

For (3.4) to hold we choose

µ >
1

p(1 − β)c2
. (3.6)

By a simple Binomial expansion we see that for (3.4) to hold, w2 must be chosen at

least equal to, or larger than, wmin, where (roughly)

wmin ∼





(1 − p)(1 − β)c1

p(1 − β)c2 −
1
µ





1

β−α

. (3.7)

The approach used has the disadvantage that it requires a special choice of v2, namely,

v2 quite large. With more work smaller choices of v2 can be obtained, but that extra work

thus far has not led to sufficiently interesting results.

It now is obvious that there is a B < ∞ for which (3.2) holds.

4 The case β = 1, C > 0

Throughout this section we have β = 1, therefore 0 < c2 < 1, and we still have C > 0.

We also have b = 1 − c2. The development in this section parallels that in the previous
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section. We choose v1 = C, v2 sufficiently large, w2 as in the previous section. In this

section that means that v2 = bw2. We choose the function V to be of the form

V (w) = ν + µ log w for w > v2. (4.1)

For (3.1) to hold we now need that

µ log (w) ≥ 1 + (1 − p)µ log (w + c1w
α) + pµ log (bw) for w ≥ w2 (4.2)

and that

ν ≥
1

p
sup

v2<w<w2

(1 + (1 − p)µ log (w + c1w
α) − µ log (w)) . (4.3)

For (4.2) to hold we choose

µ >
1

p| log (b)|
(4.4)

and a simple expansion shows that for (4.2) to hold we must choose w2 > wmin, where

(roughly)

wmin ∼





(1 − p)c1

p| log (b)| − 1
µ





1

1−α

. (4.5)

5 The case β = 1, C = 0

In this section we study the case β = 1 with C = 0. We also have 0 < c2 < 1 and

b = 1− c2. In this case different approaches are necessary for the cases α < 0, α = 0, and

0 < α < 1. The only interesting situation, however, is α < 0 because it illustrates why

the original approach could not be extended to values of p close to one.

Thus, in most of this section we have α < 0. In that case, w + c1w
α is minimal for

w = (c1|α|)
1

1+|α| = w∗. It is decreasing in w for 0 < w < w∗ and increasing in w for

w > w∗. It goes to infinity both for w ↓ 0 and w ↑ ∞.
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We now choose v1 and v2 such, that 0 < v1 < w∗ < v2 < ∞, such that also bv2 > v1

and v1 + c1v
α
1 > v2, and such that also v1 < 1 < v2, and with some additional constraints,

see below.

Thus, we insure that in order for the process Wα,p,n to move from the set (v2,∞) to

the set (0, v1) it must pass through the set [v1, v2], and in order for the process to pass

from the set (0, v1) to the set [v1, v2] it must first jump over the set [v1, v2] into the set

(v2,∞) and then, as in Section 4, drift down to the set [v1, v2].

We choose the function V (.) as

V (w) =



























νl + µl| log (w)| for 0 < w < v1,

0 for v1 ≤ w ≤ v2,

νu + µu log (w) for v2 < w < ∞.

(5.1)

(l and u stand for “lower” and “upper”). νu and µu are chosen as in Section 4, and an

additional lower bound for v2 is obtained as in that same section. The critical inequality

now becomes

νl + µl| log (w)| ≥ 1 + (1 − p) (νu + µu log (w + c1w
α)) + p (νl + µl| log (bw)|) (5.2)

for all 0 < w < v1. This can be rewritten as

(1 − p)(νl − νu) − pµl| log (b)| + (1 − p) (µl − µu|α|) | log (w)| ≥

1 + (1 − p)µu

(

log (c1) + log (1 +
w1+|α|

c1
)

)

(5.3)

for all 0 < w < v1. For given νu and µu, it is easy to choose νl, µl and w1 such, that this

holds. For example, we can take µl = µu|α|, etc.

In the situation of this section we can leave the set [v1, v2] in two ways: by jumping up

past v2 and by jumping down past v1. It remains easy to prove that the expected return

time remains bounded. That would not have been the case had we chosen v1 = 0.
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The approach in [4] in the case (α < 0, β = 1, C = 0) proves existence of a stationary

distribution only in the case p sufficiently small, but in that case also proves that every

such stationary distribution has a finite first moment. The approach in the Sections 3–5

of this note works for all 0 < p < 1 but does not prove existence of moments.

The cases α = 0 and 0 < α < 1 in the situation of this section are easy to handle.

In that situation the process Wα,p,n can not “jump over” the set [v1, v2] (as long as v1

is reasonably small and v2 is reasonably large) and the analysis of V (.) is split into two

independent subproblems: one for w > v2, one for w < v1. The subproblem for w > v2

remains as before.

In the case 0 < α < 1 we obtain for the subproblem w < v1 that

V (w) = νl + µl log (| log (w)|) (5.4)

satisfies if v1 > 0 is sufficiently small.

In the case α = 0 we can even choose the function V (.) bounded on 0 ≤ w < v1.

6 Moments of Wα,p if β = 1, C = 0: Preliminaries

In this section and the next we study the case (β = 1, C = 0) and prove for the (or, strictly

speaking, “any”) stationary distribution of Wα,p that if α < 0 then (still 0 < c2 < 1 and

b = 1 − c2)

E[W ν
α,p]



























= ∞ if ν ≥
∣

∣

∣

log (p)
α log (b)

∣

∣

∣,

< ∞ if −
∣

∣

∣

log (p)
log (b)

∣

∣

∣ < ν <
∣

∣

∣

log (p)
α log (b)

∣

∣

∣,

= ∞ if ν ≤ −
∣

∣

∣

log (p)
log (b)

∣

∣

∣,

(6.1)

while if 0 ≤ α < 1 then

E[W ν
α,p]











< ∞ if ν > −
∣

∣

∣

log (p)
log (b)

∣

∣

∣,

= ∞ if ν ≤ −
∣

∣

∣

log (p)
log (b)

∣

∣

∣.
(6.2)
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The proof utilizes a number of auxiliary processes defined in [4]:

The process Vα,p,n = p

(1−α)c1
(Wα,p,n)

1−α, which also satisfies

Vα,p,n+1 =











Vα,p,n + p + Rα,p(Vα,p,n) if χp,n = success,

cVα,p,n if χp,n = failure,
(6.3)

where c = b1−α and the function Rα,p(.) is defined by

Rα,p(v) = v

(

1 +
p

(1 − α)v

)1−α

− v − p. (6.4)

It is easily seen, and proven in [4], that for α < 0 Rα,p(.) is a positive, decreasing function

(in fact a completely monotone function).

A special role is played by the process (Xp,n), which evolves as

Xp,n+1 =











Xp,n + p if χp,n = success,

cXp,n if χp,n = failure.
(6.5)

(Xp,n still depends on α through c = b1−α).

We will also use the process Λα,p,n defined by

Λα,p,n+1 =











Λα,p,n + p + Rα,p(Xp,n) if χp,n = success,

cΛα,p,n if χp,n = failure.
(6.6)

Often, the processes Vα,p,n, Xp,n and Λα,p,n are given well-chosen (possibly random) initial

values Vα,p,0, Xp,0 and Λα,p,0 and then evolve as in (6.3), (6.5), (6.6).

Results from [4] we will use are that in that case

(1) If 0 ≤ α < 1 and for some n Vα,p,n ≤ Xp,n then Vα,p,m ≤ Xp,m for all m ≥ n, while

(2) If α ≤ 0 and for some n Xp,n ≤ Vα,p,n ≤ Λα,p,n then Xp,m ≤ Vα,p,m ≤ Λα,p,m for all

m ≥ n.
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The flow of the logic is that the Sections 3–5 of this paper prove stationarity of the

processes Wα,p,n and thereby also of Vα,p,n. The required stochastic dominance relation-

ships were proven in [4], and the combined results are utilized in this section and the next

to prove (6.1) and (6.2).

Stationarity and uniqueness of the stationary distribution of the process Xp,n was

established in [4], which also gives that stationary distribution. The exact shape of that

stationary distribution will not be needed here.

It is clear from (6.6) that if the process Λα,p,n has a stationary distribution then the

process (Xp,n, Λα,p,n)
∞
n=0 has a unique joint stationary distribution. As by–product of this

section and the next we will see that this is indeed the case.

The random variables Wα,p, Vα,p, Xp and Λα,p will always have the stationary distri-

bution of the corresponding processes. The results above show that if 0 < α < 1 then

Vα,p and Xp have a joint distribution with P{Vα,p ≤ Xp} = 1, while if α < 0 Xp, Vα,p

and Λα,p have a joint distribution with P{Xp ≤ Vα,p ≤ Λα,p} = 1. The possibility that

P{Λα,p = ∞} = 1 can not yet be excluded, but a by–product of the arguments in the

next section will show that in fact also the process (Λα,p,n) is stationary for all 0 < p < 1.

A third result from [4] we will use is

(3) There exists a random variable Z (which is elaborated on in [4]) which has a joint

distribution with Xp with P{Xp < Z} = 1 and for which E[Zs] < ∞ for all −∞ < s <

+∞.

In addition to the processes above, the proofs utilize the stochastic process (Lα,p,n)
∞
n=0

defined by

Lα,p,n+1 =











c1L
α
α,p,n if χp,n = success,

bLα,p,n if χp,n = failure,
(6.7)
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The process log (Lα,p,n) obeys

log (Lα,p,n+1) =











α log (Lα,p,n) + log (c1) if χp,n = success,

log (Lα,p,n) + log (b) if χp,n = failure.
(6.8)

It is easily seen that the process Lα,p,n is stationary if and only if |α| < 1. In that case

the stationary distribution is given by

E[Ls
α,p] = E[exp{s log (Lα,p)}] = c

s
1−α

1

∞
∏

k=0

(

1 − p

1 − pbαks

)

, (6.9)

which if pbs ≥ 1, i.e. s ≤ −
∣

∣

∣

log (p)
log (b)

∣

∣

∣, is interpreted as +∞.

If α = 0 (6.9) reduces to

E[Ls
0,p] = cs

1

1 − p

1 − pbs
(for s > −

∣

∣

∣

∣

∣

log (p)

log (b)

∣

∣

∣

∣

∣

). (6.10)

It is clear that if 0 ≤ α < 1 and for some n Lα,p,n ≤ Wα,p,n then Lα,p,m ≤ Wα,p,m for

all m ≥ n and therefore the stationary random variable Lα,p is stochastically less than

the stationary random variable Wα,p.

From (2.3) we see that for the stationary random variable Wα,p, for all −∞ < s < +∞,

E[W s
α,p] = pbsE[W s

α,p] + (1 − p)E[(Wα,p + c1W
α
α,p)

s], (6.11)

possibly ∞ = ∞. This leads to a number of simple observations:

Observation 1: If

E[(Wα,p + c1W
α
α,p)

s] = ∞ (6.12)

then

E[W s
α,p] = ∞

Observation 2: If

E[W s
α,p] < ∞ (6.13)
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then

E[(Wα,p + c1W
α
α,p)

s] =
1 − pbs

1 − p
E[W s

α,p] < ∞. (6.14)

Since clearly 0 < E[W s
α,p] ≤ ∞ (etc), observation 2 leads to

Observation 3: If

pbs ≥ 1, i.e. s ≤ −

∣

∣

∣

∣

∣

log (p)

log (b)

∣

∣

∣

∣

∣

(6.15)

then

E[W s
α,p] = ∞, for every value of α. (6.16)

We also have Observation 4: If s ≥ 0 and α < 0 then

E[(Wα,p + c1W
α
α,p)

s] < ∞ (6.17)

if and only if

both E[W s
α,p] < ∞ and E[W αs

α,p] < ∞. (6.18)

Namely (s ≥ 0):

W s
α,p < (Wα,p + c1W

α
α,p)

s, (c1W
α
α,p)

s < (Wα,p + c1W
α
α,p)

s, (6.19)

and (Minkowski’s inequality)

(

E[(Wα,p + c1W
α
α,p)

s]
) 1

s ≤ (E[(Wα,p)
s])

1

s + c1 (E[(Wα,p)
αs])

1

s . (6.20)

7 Existence of moments of Wα,p: the Proofs

In this section we still have β = 1, C = 0.

For 0 ≤ α < 1 we saw that Lα,p is stochastically smaller than Wα,p, and from [4] we

saw that (still 0 ≤ α < 1) Vα,p = p

(1−α)c1
(Wα,p)

1−α is stochastically less than Xp, which is

stochastically less than Z, for which E[Zs] is finite for all s. For s > −
∣

∣

∣

log (p)
log (b)

∣

∣

∣ this gives
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finite lower and upper bounds for E[W s
α,p]. For s ≤ −

∣

∣

∣

log (p)
log (b)

∣

∣

∣ Observation 3 already told

us that E[W s
α,p] = ∞. This completes the proof of (6.2).

Clearly, Xp,n is the same as V0,p,n = p

c1
W0,p,n with b replaced by c = b1−α. Hence, by

the result above, E[Xs
p ] < ∞ if and only if s > −

∣

∣

∣

log (p)
(1−α) log (b)

∣

∣

∣.

If α < 0 we know from [4] that Vα,p is stochastically larger than Xp. With Observation

3 this shows that indeed E[W s
α,p] is infinite for s ≤ −

∣

∣

∣

log (p)
log (b)

∣

∣

∣, finite for −
∣

∣

∣

log (p)
log (b)

∣

∣

∣ < s ≤ 0.

In addition (still α < 0), if s > 0 then

E[(Wα,p + c1W
α
α,p)

s] = cs
1E[W sα

α,p(1 +
W 1−α

α,p

c1

)s] > cs
1E[W sα

α,p]. (7.1)

Hence, by Observation 4, indeed E[W s
α,p] = ∞ when s ≥

∣

∣

∣

log (p)
α log (b)

∣

∣

∣.

Left over is the case α < 0, 0 < s <
∣

∣

∣

log (p)
α log (b)

∣

∣

∣.

(6.5) and (6.6) show that

Λα,p,n+1 − Xp,n+1 =











(Λα,p,n − Xp,n) + Rα,p(Xp,n) if χp,n = success,

c(Λα,p,n − Xp,n) if χp,n = failure.
(7.2)

Hence,

E[(Λα,p,n+1−Xp,n+1)
ν ] = (1−p)E[((Λα,p,n−Xp,n)+Rα,p(Xp,n))

ν ]+pcνE[(Λα,p,n−Xp,n)
ν ].

(7.3)

In the remainder of this section we will use this to obtain crude, but finite, upper

bounds for E[(Λα,p,n − Xp,n)
ν ] in the case α < 0, ν > 0, as long as E[(Rα,p(Xp))

ν ] < ∞.

Observation 5: Let G and H be any two random variables, and let ν ≥ 0. Let µ > 0.

Then

E[|G + H|ν ] = E[|G + H|νχ(|H| ≤ µ|G|)] + E[|G + H|νχ(|H| > µ|G|)] ≤

(1 + µ)νE[|G|νχ(|H| ≤ µ|G|)] +

(

1 +
1

µ

)ν

E[|H|νχ(|H| > µ|G|)] ≤
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(1 + µ)νE[|G|ν] +

(

1 + µ

µ

)ν

E[|H|ν ]. (7.4)

We apply this result to (7.3) with ν ≥ 0 and obtain

E[(Λα,p,n+1 − Xp,n+1)
ν ] ≤

((1 − p)(1 + µ)ν + pcν)E[(Λα,p,n − Xp,n)
ν ] + (1 − p)

(

1 + µ

µ

)ν

E[(Rα,p(Xp,n)
ν ]. (7.5)

We now choose Xp,n to have the stationary distribution, so that E[(Rα,p(Xp,n))
ν ] =

E[(Rα,p(Xp))
ν ] for all n. We choose ν > 0 and choose µ > 0 such, that (1 − p)(1 + µ)ν +

pcν < 1 (that is clearly possible). If now for some n

E[(Λα,p,n − Xp,n)
ν ] ≤

(1 − p)
(

1+µ

µ

)ν

1 − ((1 − p)(1 + µ)ν + pcν)
E[(Rα,p(Xp))

ν ] (7.6)

then (7.6) holds for all m ≥ n. Hence, if E[(Rα,p(Xp))
ν ] < ∞ and E[(Λα,p,0−Xp,0)

ν ] < ∞

then

lim sup
n→∞

E[(Λα,p,n − Xp,n)
ν ] ≤

(1 − p)
(

1+µ

µ

)ν

1 − ((1 − p)(1 + µ)ν + pcν)
E[(Rα,p(Xp))

ν ] < ∞. (7.7)

It is easily seen, and proven in [4], that (still α < 0) Rα,p(v) = O(v−|α|) for v ↓ 0, and

Rα,p(v) → 0 for v → ∞. Hence E[(Rα,p(Xp))
ν ] < ∞, and therefore also E[(Λα,p−Xp)

ν ] <

∞, as long as 0 ≤ ν <
∣

∣

∣

log (p)
|α|(1+|α|) log (b)

∣

∣

∣. The remainder of the proof of (6.1) is left as an

exercise for the reader.

As by–product of the proof above we see that E[(Λα,p)
ν ] < ∞ as long as 0 ≤ ν <

∣

∣

∣

log (p)
|α|(1+|α|) log (b)

∣

∣

∣. This shows that indeed also the process (Λα,p,n) has a stationary distribu-

tion.

This section gives very coarse upper bounds to moments of interest, little more than

proofs of finiteness. Once finiteness has been established the arguments in [4, 5] can be

used to obtain sharper bounds.
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It must be noted that E[W s
α,p] can be infinite for certain values of s only because the

process (Wα,p,n) can, sufficiently often, achieve very small values. If α < 0 then after the

next upward jump Wα,p,n has a very large value. It is to be expected that with any C > 0

the process (W ∗∗
α,p,C,n) in (2.4) has a stationary distribution with E[(W ∗∗

α,p,C,n)
s] < ∞ for

all −∞ < s < +∞.

8 Remaining Issues

Possibly the most intriguing remaining question is whether if β = 1, 0 < c2 < 1, α <

0, C = 0 the stationary distributions of the processes Wα,p,n and its rescaled version Vα,p,n

are unique. In all other cases (C > 0) and (β = 1, 0 < c2 < 1, 0 ≤ α < 1, C = 0)

the uniqueness has been proven. It “seems obvious” that there is uniqueness also in

the remaining case, but despite considerable effort, this has not yet been proven. If

there is non–uniqueness the numbers α, c1, c2, p must have truly weird number–theoretic

properties to allow multiple stationary distributions on sets that can not be reached from

one another.

[7] proves in all cases with C > 0 weak convergence, for p ↓ 0, of appropriately rescaled

window size processes to a limit process. If also (0 ≤ α < β = 1) this still holds if C = 0,

as can be proven using the material in [5]. If α < 0 < β = 1, C = 0 this additional step

runs into difficulties. In that case there is an obvious “conjectured” limit process. In all

cases weak convergence of the stationary distributions of the rescaled processes to the

stationary distribution of the (proven or conjectured) limit process has been proven.

In the case β = 1 convergence of the moments of the stationary distributions of

the rescaled processes to the moments of the stationary distribution of the (proven or

conjectured) limit process has been proven, with rates of convergence. This problem has

not been studied yet for the case β < 1.
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