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Abstract

With all its history of reliable performance, the TCP proto-
col is known to break down in a situation with high loss and
high RTT. A known solution is “Split TCP”, where one or a
few proxies (helper boxes) are used to break the end-to-end
TCP connection into a few (almost) independent legs. Each
leg has its own feedback, congestion control, error control
mechanism, etc.

The main contributions of our work are the design and
implementation of “Split TCP” using Netfilter Hooks in the
Linux kernel, and the use of IP over IP for transport. The
kernel implementation reduces overhead. The implementation
used leaves TCP packets and flags intact, thus allowing use of
Telnet (etc) over a Split TCP connection. The primary area
of use is for Internet connections, irrespective of the user
application. Connections can be split into legs having high
RTT or high loss, preferably not both. The use of IP over IP
allows use of many helper boxes in a connection and makes
it easier to achieve transparency for the original end–hosts.

I. INTRODUCTION

Over the years, the Transmission Control Protocol (TCP)
has been the widely accepted means of communicating be-
tween computers. Though in most situations TCP offers reli-
able performance, there are known network conditions, mainly
a combination of high Round Trip Time (RTT) and high loss
or even fading, that drastically affect its performance. The
“Square Root Law” [OKM96], [PFTK98] gives a theoretical
argument. The measurements from the PingER project [Pin]
of the Internet End-to-end Performance Monitoring (IEPM)
group and [MFR02] confirm the theoretical insight. We used
results from [Pin] in our choice of round trip times and delays
in our investigations of actual performance.

Measurements and theory indicate that the larger the RTT
and the probability of loss, the lower the TCP throughput. The
situation of interest in our work is that with a high quality, high
RTT leg, say one containing a satellite link between the USA
and a third world country, and a low quality, low RTT, high
drop (and possibly even fading) leg in the third world country.

In this paper we study and enhance “Split TCP” as a
solution for the above problem. We describe the design and
implementation of “Split TCP” in the networking stack of the
Linux kernel.

Split TCP has been extensively researched [BSAK95],
[BB95], [BS97], [HA97], [KKFT02] and shown to improve
the performance of TCP in Mobile Networks. It works by
breaking the end-to-end TCP connection into two or more
“legs”. In this paper the term “leg” is used to describe a path
between two computers that may go through several routers.

For reasons that will become clear in Section II we consider
our Helper Boxes (HBs) as specialized routers. Fig. 1 shows
a Split TCP mechanism with one HB. A HB acts as a proxy
for D (destination) while talking with S (Source) and acts as
a proxy for S while talking with D. This is achieved through
Acknowledgement Spoofing and maintaining TCP parameters
at the HB that are essential for the flow control of each leg.
It also maintains, for each of its legs, parameters for RTT
estimation, error control and congestion control mechanism.
By splitting the connection, each of the legs now has fewer
network problems to deal with than the end-to-end connection.
This results in an overall increase in the TCP performance
of the split connection. We mathematically prove this in
Section IV. A property of our design is that Split TCP is
completely transparent, hence not requiring any modifications
in the networking code of the end hosts.
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Fig. 1. Split TCP connection

The rest of the paper is organized as follows. In Section
II, we outline the network environment behind the design
of our form of Split TCP. Section III discusses the design
of our version of Split TCP in the Helper Box. We give
a mathematical proof of why Split TCP will improve the
TCP performance in Section IV. We present the results of
our experiments in Section V. In Section VI we compare our
work with the previous research contributions. We provide the
conclusions of our work in Section VII.

II. SPLIT TCP DESIGN ENVIRONMENT

We have designed our form of Split TCP primarily for
the following situation: There is a “campus A” in the USA
and a “campus B” in an underdeveloped country, say in
Africa. There is a leg from “reasonably close to campus A” to



“reasonably close to campus B” that has high RTT and low
loss. This leg could contain a satellite link. From (say) the
satellite earthstation on there is a leg of questionable quality
through the third world country.

The theory of Section IV shows that in a one HB situation
the optimal location for that HB is the place where the clean,
large RTT leg interfaces with the high loss, low RTT leg
in the underdeveloped country. One can think of that as in
or close to the satellite earthstation in the underdeveloped
country. However, this leaves a significant problem: How do
we guarantee that all traffic between campus A and B is
intercepted by the HB, and that only traffic that is intended to
be intercepted is indeed intercepted.

Our solution is as follows: Place a second HB ( ����� ) in
campus A and a third HB ( ����� ) in campus B. Call the HB at
the distant earthstation ����� (I for intermediate). Give campus
A a network address a.b.c.d/n and give campus B a network
address w.x.y.z/m.

In campus A, route all traffic to w.x.y.z/m to ��� � . In
��� � , embed all packets to w.x.y.z/m in an IP packet (IP over
IP) with destination address ��� � . In ��� � , decapsulate the
packet and encapsulate the original packet in an IP packet
with destination ��� � . At ��� � , take out the original packet
and forward to the actual destination. Traffic in the opposite
direction is handled similarly.

This mechanism has the advantage that the original end
hosts do not need any modifications, while at the same time
between the HB’s we can use modified versions of the TCP
feedback mechanisms (which in our situation is implemented
at the IP layer in the Linux kernel). This design will work
for any number of HB’s and “campuses”. Each HB has a
table mapping the destination address into either the “next
HB address” or “to original destination”.

Apart from the HB’s, the only changes necessary are in the
routers of the campuses A and B.

III. HELPER BOX DESIGN

This section outlines the kernel level design of our version
of Split TCP. The Split TCP software resides at the Network
layer in the networking stack of the HB’s. It was implemented
as a Linux Kernel Loadable Module (LKLM) and is registered
at the Netfilter hook, NF IP PRE ROUTING [WPR 	 05].

A kernel level design, although difficult, is more efficient
and is what we chose. It works with packets as opposed to
byte streams. There is no need for repacketization of the
data, saving CPU time. It also helps, at no extra effort, in
preserving the TCP flags in a TCP packet. This approach also
preserves the packet boundaries between different legs. This
is important, for example, when the URG or PSH flag is set.
A disadvantage of the kernel level design is the buffer space,
which is limited by the maximum main memory of the HB.
The buffer space is used by the HB to store the data packets
and bookkeeping information about the flows.

The design chosen frees the end hosts of any required code
changes and ensures minimal configuration changes (if any) in
the end hosts and the networks they belong to. For the HB to

function properly, all packets of a flow between the end hosts
must be routed through the HB. This helps the HB to maintain
an accurate state of the TCP flow. The HB makes use of IP
over IP (as explained in the previous section) to communicate
with other HB to guarantee this.

The Split TCP implementation in the HB intercepts all
network traffic passing through it. An IP packet whose source
and destination IP address belong to the special IP address
pools of the campuses is picked for special processing. The
HB simply routes all other packets (if seen at all) as if it were
a regular router. This ensures that all traffic other than that
requiring special processing does not get dropped by the HB.
In other words, the HB’s are designed to be dual functional
thus reducing the need for an additional network component.

For each TCP flow that the HB splits, it sets aside a pair
of data queues. There is one queue per direction of data
flow. These queues are used to cache the data packets in
the respective directions. This approach of buffering helps in
possible retransmission and data rate mismatch if any, thus
isolating the network problems (like drop, delay) of one leg
from the other. At any time, a queue will contain data packets
that have arrived but have not been forwarded yet, as well as
packets that have been forwarded but not acknowledged yet
by the next HB (or destination).

The HB also maintains the state of each direction of flow.
This is essential for the accurate operation of the HB. It
maintains the variables proposed in [Pos81] and more. In
addition, a flow tracker is used by the HB to track the split
connections between itself and the end hosts. The data queues
and the state keepers are a part of the flow tracker.

In our design, the TCP flow connection establishment is
end-to-end. This frees the HB from providing any application
specific user authentication service. It updates the MSS option
of the SYN packets, as necessary, to reflect the use of IP
over IP or other TCP options being negotiated. This helps
in preserving the packet boundaries from leg to leg ensuring
faithful transportation of the TCP flags (URG, PSH etc).

IP packets between the two campuses that are not TCP pack-
ets are encapsulated (IP over IP) but no state is maintained.

An important feature that needed to be designed for the HB
was Error Recovery. Since the HB acts as a proxy for both
the source and the destination host (or previous and next HB,
etc), it simulates the error recovery mechanism of both. When
acting as a source, HB maintains a RTT estimate and RTO
timer between itself and the destination host (or next HB). This
helps in the retransmission of a lost packet and entrance into
congestion avoidance phase. The TCP NewReno algorithm
was implemented to handle the congestion avoidance phase
of the HB.

However, there can be packet loss in the leg between the
source host (or previous HB) and the HB. The HB has the abil-
ity to accept packets after the lost packet. Just like a destination
host would, it keeps sending duplicate acknowledgements until
it receives the lost packet that increases the acknowledgement
number. It also takes care not to forward any data packet after
the lost packet. Thus, a HB is designed to re-order the data



packets, transmit them in order and retransmit as needed.
Recently we added the window scaling option within the

HB. Each HB is designed to use the window scaling option
by default. Hence our design supports the use of the window
scaling option between the HB’s irrespective of whether the
end hosts use it or not.

IV. DOES SPLIT TCP IMPROVE PERFORMANCE?

If all is well for a TCP connection, it will not significantly
benefit from a HB. However if the TCP connection has
the problem that is being addressed, HB’s will surely help.
Consider the scenario in Fig. 2 to prove this statement.
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Fig. 2. Split TCP with loss and delay

In the scenario depicted, there is one HB between the two
end hosts. To introduce delay and loss in our measurement
runs, we added two more computers running NistNet [CS03]
in between S (Source) and HB, and in between HB and D
(Destination).

The leg between S and HB, “Leg 1” has low loss with drop
probability )+* and a large RTT, ,.-/-0* . This leg is similar to
that of a leg having a satellite link. The leg between HB and
D, “Leg 2” has high loss with drop probability )21 and a short
RTT, ,.-/-+1 . This leg is similar to the final 100 or so miles
of the TCP connection in an “underdeveloped country”.

The throughput, Thp, under many circumstances, for a TCP
connection is given as [OKM96], [PFTK98]-435)76 8:9/;=<,>-?- 6 @BACA,.-/-EDGF ) (1)

where cwnd: congestion window
RTT: Round Trip Time
MSS: Maximum Segment Size
p: Probability of packet loss

This is true as long as the source host has plenty of data
packets to send and the congestion window is the only limit
on the packets in flight, and the probability, p, is not too large.

Hence, the throughput, for Leg 1 would be-435) * 6 @BA5A,>-?-=*HD F )2* (2)

as long as the buffer in HB never fills. Similarly, the through-
put for Leg 2 would be-435)I1/6 @BA5A,>-?-21JD F )I1 (3)

as long as the buffer in HB never empties.

If the drop probabilities ) * and )41 are independent of each
other, the total drop probability of the entire route is)+*JKB) 1ML )2*JD0) 1 (4)

As long as at least one of ) * and )41 is small, we have ) * D�)I1/N) * KB)I1 . Hence we can write (4) as)+*JKB) 1ML )2*OD0) 1 6P)2*QKR) 1 (5)

Hence, if there were no HB in Fig. 2, the end to end
throughput would be-23S)T6 @UA5AV ,.-/- * KE,.-/-+1XWYD F ) * KR)41 (6)

However, in the situation as shown in Fig. 2, if either one of-435)2* and -435) 1 is considerably larger than the other or if the
buffer in HB is quite large, the effective end-to-end throughput
would be

Z0[\[7] -23S) ^ _a` ; b @BACA,.-/-Y*cD F )+*2d @BA5A,.-/- 1 D F ) 1feg @BACAV ,.-/- * Kh,.-/-+1XW=D F ) * KB)I1 d (7)

so an improvement is (mathematically) assured. The improve-
ment is more pronounced in the situation described, with,.-/- 1 Ni,.-/-Y*j6k,.-/-Y*HKE,.-/- 1 (8)

and ) * Nl)I1?6E) * KR)41 (9)

(for example, a clear satellite link to an underdeveloped
country followed by a high loss link within that country).
This explanation shows that the “one helper box” solution
requires the HB to be located in the underdeveloped country,
but “attached to the clean leg”.

Hence we can conclude that using Split TCP for TCP
connections having large RTT and high drop probability will
result in greater performance. We emphasize here that the
throughput of (7) holds when the HB has a large buffer. There
might be situations where both the legs are fading but at
non-overlapping intervals. In that situation an adequately large
buffer is expected to make a large difference.

V. RESULTS

We tested our version of Split TCP against two modes of
operation - bulk transfer and real time user response. Telnet
and ssh were used to test the real time response while files,
of varying sizes, were transferred for the bulk mode. Most of
our measurements correspond to the bulk transfer. We mention
our findings regarding telnet and ssh towards the end of this
section.

The implementation of Split TCP was done on desktop
computers consisting of either a Pentium 4, 2.4 GHz processor
or an AMD Athlon XP 1700+/2000+ processor. The Linux
kernel version on these computers was either 2.4.20 or 2.6.5.



These were the HB’s. All computers had 512 MB of RAM.
100 Mbps ethernet links were used for communication.

We measured the performance of Split TCP in the situation
of Figure 2, for a few sets of parameter values. We did some
measurements with ,.-/-=1 g g ,.-/- * and ) * and )I1 of the
same order of magnitude. For that situation Section IV predicts
that Split TCP will do only moderately better than end-to-end
TCP. This is indeed what we found. In this paper we report
a sample measurement, Fig. 3, for these conditions. Other
measurements are not reported but are available on request.
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For the measurement shown in Fig. 3, the network pa-
rameters of Fig. 2 were as follows: ,.-/-0*U^����S_�� , )+* ^���

, ,.-/- 1 ^������S_�� and ) 1 ^ ���
. Various files were

transferred between S and D to record our measurements. The
file size varied from 25 MB to 450 MB with increments of
25 MB. Each file was transferred 3-5 times to get a good
approximation of the transfer time. Each file was transferred
under 2 different conditions, one with Split TCP enabled in
the HB and one without.

We then changed network conditions to 200ms RTT with
0% drop between S and HB and 10ms RTT and x% drop
probability between HB and D, where x varies from 5% to
20% in increments of 1. This resembles the situation involving
1 HB placed near the earthstation of the developing country.
A 100MB file was transferred between the end hosts. As seen
in Fig. 4, a flow with Split TCP is, on an average, 9.5 times
faster than a corresponding regular TCP flow.
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We performed the same test on a network setup with 3 HB’s
as shown in Fig. 5. This closely resembles the network setup
discussed in Section II. The drop probability between ��� �
and ��� � was varied from 5% to 15% in increments of 1. A
100MB file was transferred between the end hosts. As seen in
Fig. 6, a flow with Split TCP is 2.60 to 6.54 (increasing with
drop probability) times faster than a corresponding regular
TCP flow. We expect a larger difference at higher drop
probabilities.
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Fig. 5. 3 HB Network Setup
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Fig. 6. Varying drop probability in 3 HB setup

For the next experiment, multiple transfers were started
simultaneously between the end hosts. This was done to find
out the changes in the behaviour of the HB when subjected
to more than a single TCP flow. The network setup of Fig.
2 was used for the experiment. The network parameters were
as follows: ,.-/-Y* ^$#%���S_�� , )2* ^&� � , ,.-/- 1 ^'� �5_(� and)I1 ^ ���

. A 100 MB file was FTPed between the end hosts.
As can be seen from Fig. 7, there is no change in the transfer
time of the file even with increasing TCP flows.
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In all runs reported up till now, we did not use the window



scaling option. This limits the effective window to 64,000
bytes instead of the higher congestion window. For the next
experiment, we included window scaling in the HB design.
The network setup of Fig. 5 was used for this experiment
with the drop probability of “Leg 3” fixed at 5%. Various files
were transferred between S and D to record our measurements.
The file size varied from 25 MB to 250 MB with increments
of 25 MB. Each file was transferred 3-5 times to get a good
approximation of the transfer time. Each file was transferred
under 2 different conditions, one with Split TCP enabled in the
HB and window scaling being used only between the HB, and
one with Split TCP disabled in the HB and window scaling
being used by the end hosts. Fig. 8 compares the average
transfer times of the files under the 2 conditions. A flow with
Split TCP and window scaling option is on an average 4.99
times faster than a corresponding regular TCP flow with the
end hosts using window scaling.

Under the same network conditions (drop probability of
5%), the average transfer time of a 100 MB file with Split
TCP and window scaling is twice as fast as the one in Fig.
6. The use of window scaling option by the end hosts, as
anticipated, did not change the transfer time of the 100 MB
file when regular TCP was used. Hence from Fig. 6 and Fig. 8
we can infer that as the network conditions worsen, the factor
of improvement because of Split TCP will increase and the
use of window scaling will make this factor even larger.
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We also verified that with our version of Split TCP it is
possible to have a telnet or ssh connection over Split TCP. The
successful ssh connections over Split TCP demonstrate that a
secure channel is not broken because of the introduction of the
HB in the network. As stated earlier, any type of authentication
is done end-to-end. For performance with ssh we only have
subjective evaluation. With an RTT of 200 msec and a drop
probability in the third world leg of 10%, we did not perceive
a difference between Split TCP and end-to-end TCP. When
the drop probability was increased to 20% we perceived a
considerable difference.

In all cases Split TCP gives considerable improvement and
the improvement is more significant in the “worst” situation.

VI. RELATED WORK

Over the years, researchers have presented work that high-
lighted the advantages of using Split TCP in Mobile Networks.
In a mobile network, the network connection between the
Fixed Host (FH) and the Mobile Host (MH) is broken down
into 2 connections at the base station (also know as Mobile
Support Routers, MSR). In a mobile network, a packet drop
is not always an indication of congestion. For example, envi-
ronmental factors may cause packet drops. Irrespective of the
cause, TCP will initiate the congestion avoidance phase thus
reducing its current transmission rate and overall performance.

Most of the related work has concentrated on preventing
the sender side TCP from invoking its congestion control for
every packet drop. The problems of the wireless connection
are separated from the wired connection by splitting the
connection at the MSR. Most of the methods introduce a
new protocol at the MSR and few changes in the MH. For
example, in MTCP [YB94], a new session layer protocol
is proposed. While I-TCP [BB95] proposes to introduce I-
TCP library in the MH to facilitate its communication with
the MSR. And Mobile-TCP [HA97] proposed to introduce
a new protocol over the wireless link of the connection,
thus allowing the MSR to relieve the MH from buffer and
timer management mechanisms. M-TCP [BS97] proposed a
restructuring the mobile network into a 3-layer architecture
to solve the problem of frequent cell exchanges in addition
to the bit-error rate of the wireless link. Lastly, the Snoop
protocol [BSAK95] proposed caching data packets at the MSR
to increases the end-to-end TCP performance. However not all
data packet are cached causing occasional situations when the
sender would need to retransmit.

An aspect of most of the above protocols is that they have
concentrated on the network problems due to the wireless link.
Though these problems do affect the overall performance, the
network problems over the wired leg should not be discarded.
In our work, we present a Split TCP design irrespective of
the networking environment i.e. wired or wireless. Our design
does not require any code modifications in the end hosts, thus
making it completely transparent.

TCP Splice [MB99], though similar, is not quite the same.
TCP Splice concentrates on increasing the performance of
the web proxies by relaying the data packets at the kernel
level as opposed to through the user space. The connection
setup, including user authentication, between the client and
the server is performed by the web proxy, which in our
case are done end-to-end. This insures the availability of the
end hosts to each other. Secondly, the feedback, congestion
control and error control mechanisms are performed by the
end hosts. Hence a setup with TCP Splice may still suffer
poor performance if the network conditions are as discussed
previously. We are proposing the use of Split TCP to overcome
the network performance by providing each leg with its own
feedback, congestion and error control mechanisms.

In [WZZ 	 06], the authors discuss methods that can be
used to find whether Split TCP is being within a network.



According to their findings, 3 cellular service providers (2
CDMA2000 networks and 1 GPRS network) have selectively
implemented Split TCP within their networks. Although we
believe it to be a kernel level implementation, no details were
provided in the paper.

VII. CONCLUSIONS

In this paper we presented the design and implementation
of Split TCP at the network layer in the Linux networking
stack to improve the performance of TCP in an environment
having large RTT and high drop probability. Computers called
“Helper Box” with modified network stack were introduced in
the network. These helper boxes act as performance enhancing
proxies. We also proposed how IP over IP can be used
to guarantee the flow of traffic through the HB’s. In our
implementation, the only change required in the network is
in the helper box. The routers may require minimal changes
in their forwarding table.

We have tested our implementation and found very promis-
ing results. With varying drop probability, a connection with
1 HB was 9.5 times faster in comparison than one without.
We also experienced a considerable increase in the response
time of a telnet and ssh connection over Split TCP under poor
network conditions. These results met our expectations of large
improvements in situations with worse and asymmetrical drop
probabilities.
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