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1 Introduction

In this note I am collecting some observations on Optical Switching in a WDM (Wave-

length Division Multiplexed) Optical network. These observations grew out of a number

of conversations with George Clapp, and a meeting with Ann von Lehmen, Stu Wagner,

George Clapp, GK Chang, and Stu Personick on 04/28/00.

In the problem area at hand an optical �ber contains a large number of \channels".

Each channel is a single wavelength. All channels have exactly the same bitrate. The

number of channels (wavelengths) per �ber can be well over 100. The channels carry IP

packets. In nodes in the network there can be E{O and O{E conversion (Electronic to

Optical and Optical to Electronic). In nodes in the network packets also can move from

one channel in one �ber into another channel in another �ber. This can be done by O{E

followed by E{O, but it can also be done without conversion (purely optical switching).

In case of purely optical switching it is possible to move from one wavelength to another.

1



(Name here).

All{Optical connections in the node can be by nailed down connections (Optical Cross

Connect) or by statistical multiplexing. In the �rst case all packets from one channel

automatically move all into the same dedicated (output) channel.

In case of statistical multiplexing we need to ty a (preferably large) number of channels

into a \bundle". The channels (wavelengths) in the bundle can all reside in one �ber, or

can be distributed over a number of �bers. All channels in the bundle share a common

origin and destination. At the origin there is contention between packets wanting to use

the bundle. Let the number of channels in the bundle be N . When a new packet arrives

at the origin of the bundle, if at that time fewer than N packets are in progress of being

pumped into the bundle, the new packet starts being pumped into the bundle (into one

of the channels of the bundle). Since all channels have exactly the same bandwidth we do

cut-through routing: there is no storage in the node. The packet comes out of the \input

port" exactly as fast as it goes into the \output port". The input-channel and output

channel not having the same wavelength is no problem.

In case of statistical multiplexing there is the possibility that when the header of a

packet starts arriving, there is no free channel in the output link. In that case the packet

is discarded (lost). (In more sophisticated systems there may be the possibility of saving

such packets, see ... ). We need to estimate the probability of a packet being lost.

In order to estimate this probability we need to build a model. The Erlang{B model

will be presented in Section 2. That section also contains results on the largest possible

load such a multiplexer is allowed to receive, given the number of channels and the allowed

packet drop probability.

In case of O{E conversion, the electronic images can be stored in a bu�er. This

allows a bu�er (an electronic bu�er) in front of the bundle of channels. When a channel
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(wavelength) in the bundle frees up, the next packet (if any) is converted to O again

and pumped into the channel. Since both the number of channels in the bundle, and the

number of packets that can be bu�ered, are �nite, loss can still occur.

Still, O{E{O conversion allows higher utilization of the bundle of channels. How much

higher depends on the delays allowed in the bu�er, and on the permitted loss probability.

A model must be built. The Erlang{C model will be presented in Section 3. In Section

4 we compare results from Sections 2 and 3, and show that as long as the number of

wavelengths in the bundle is at least 50, use of O{E{O conversion and electronic bu�ering

increases allowed bandwidth utilization by a factor 25 % to 75 %, depending on the

permitted packet drop probability and the number of wavelengths in the bundle. This

improvement decreases as the number of wavelengths in the bundle increases, and as the

requirement of a low drop probability is relaxed.

In case the next link on the normal route of a packet is not available, we could attempt

to re{route the packet without using O{E conversion.

(Give the name of such schemes. Hot potato routing?)

(This idea was developed together with George Clapp).

This is somewhat analogous with DNHR and similar schemes in circuit switched tele-

phony. A di�erence is that in optical packet switching there is no time to obtain infor-

mation on the state of other links in the over
ow route. There is danger of doing more

damage than good, by causing loss of other packets on the over
ow route. (\Hysteresis"

etc.).

Still, it is possible to somewhat safely do dynamic re-routing.

One way of doing this is the following:

In the shimheader (other name? ask GK) of every packet, create space for a\kick{me"

bit or \kick{me" counter. When a packet is re{routed over a route di�erent from the
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standard route to its destination (or to its egress{router), its \kick{me" bit is set. Once

the kick{me bit is set, a packet can be allowed into a bundle of channels only if su�ciently

many many channels in the bundle are free. This \su�ciently many" number of channels

is chosen such, that the probability that any blocking will occur in the bundle during the

time that the extra packet is being pumped into the channel is negligibly small.

A formula to estimate this probability, as function of the total number of channels in

the bundle and the o�ered load in the bundle, and (last but not least!) the number of

currently occupied channels in the bundle is given in Appendix C.

Thus, once the \kick{me" bit of a packet is set, it is routed only through relatively

underutilized bundles.

In a variation on this theme, we could have a \kick{me" counter. Every time the

packet is re{routed its kick{me counter in increased. If the counter reaches a critical level

(say 4), the packet is discarded instead of routed. We could have a two-bit counter: levels

0, 1, 2, 3 exist in the network. If a packet of level 3 must be re-routed, it is instead

discarded. Even at levels 1 etc it is allowed only into relatively underutilized bundles.

@@@ I (tjo) am not very optimistic about this scheme. I doubt the yield in perfor-

mance is worth the complexity. But let's have a look. @@@

2 The Erlang{B Model

In this section we describe the Erlang{B model for the purely optical statistical multi-

plexer.

We assume that packets arrive according to a Poisson Process with intensity �. The

acceptability of this assumption for the analysis at hand will be diascussed at the end of

Section 3. The conclusion is that while the assumption is wrong, for the analysis at hand
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it probably leads to reasonably accurate predictions.

Packets are not (necessarily) all the same size. We assume they have sizes that are

stochastically independent and all have the same distribution. Let T be the average

amount of time it takes to pump such a packet into a channnel. Let N be the number of

\servers" (the number of wavelengths). We de�ne:

R = �T; � =
R

N
: (2.1)

R is the average workload or tra�c intensity, and with a slight abuse of notation we

call � the average utilization. In a sensibly engineered system, � < 1, and if no packets

were ever lost � would be the average utilization of the channels in the link.

In this model, the probability that at some point in time exactly k packets are in the

process of being pumped into the link (thus using k of the N channels) equals

Pfk busyg =
Rk

k!PN
j=0

Rj

j!

: (2.2)

Thus, the probability that a packet gets lost is the probability that upon its start

all channels are busy. This is given by the famous Erlang{B formula B(N;R): The

probability that a packets gets lost is

PfN busyg = B(N;R) =
RN

N !PN
j=0

Rj

j!

: (2.3)

We de�ne

D(N;R) =
NX
k=0

Rk

k!
e�R; (2.4)

and
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�(x) =
Z x

�1

e�
y2

2p
2�
dy; (2.5)

i.e. �(:) is the distribution function of the normal distribution. For R large and N � R

(or least not (N < R and R�N >>
p
R) we have

D(N;R) � �

 
N + 1

2
�Rp
R

!
; (2.6)

(The Central Limit Theorem in the special case of the Poisson Distribution). Hence

under the same conditions also

B(N;R) =
RN

N !
e�RPN

j=0
Rj

j!
e�R

�
RN

N !
e�R

�
�
N+ 1

2
�Rp
R

�: (2.7)

If N > R and N �R >>
p
R a practically equally good approximation is

B(N;R) � RN

N !
e�R: (2.8)

In the appendix I have collected some more relevant observations on the Erlang{B

function.

The value of (2.3) is at least as good as the assumptions made. The main issue is

whether packet arrivals form a Poisson Process. This assumptions is almost never good.

However, in the case that the actual stream of packets consists of very many 
ows, each of

which is (almost) negligible in intensity compared with the whole stream, the assumption

seems quite acceptable: Over time periods short compared with the time between two

packets of the same 
ow, the process is likely to be \quite Poisson".

(2.3) allows us to estimate the maximal utilization at which a bundle can be driven

before the packet loss rate becomes unacceptable. Suppose we are willing to accept a
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packet loss probability 
. (For example, 
 = 10�6 or 
 = 10�4). We need to �nd that

R = R(N; 
) for which B(N;R) = 
. That value of R is the highest acceptable o�ered

load, and the corresponding value � = R

N
is the highest acceptable \utilization".
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Figure 1: Maximal allowed � as function of N, Erlang B (Q = 0)

Finding R = R(N; 
) can be done using a standard search meachnism, e.g. bisect-

ing search, or Newton's method. The appendix contains some approximate methods to

reasonably quickly get an approximate solution. The approximate methods use a �rst

approximation based on (2.8) and then a re�nement based on (2.7). Because the Central

Limit Theorem for the Poisson distribution is used the approximation must be quite good

for N � R � 30, and probably are acceptable over a much larger range.

Figure 1 contains results of this approximate method. For 
 = 10�4 and 
 = 10�6

it gives the (approximate) maximal allowed � = R
N

as function of N , for 1 � N � 200.

The statement that \Q = 0" is another way of saying that we have the Erlang{B model:
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arriving packets that do not �nd an idle server are not allowed to wait (waiting space has

size zero) and are discarded.

3 The Erlang{C model

In case of optical to electronic conversion we can add a bu�er where packets can queue

up. Let N be the number of channels (wavelengths), and let Q be the number of packets

that can be waiting in the bu�er. For convenience we assume that this number Q is to

be determined, and that the number of packets that can be bu�ered then is at most Q,

independent of the packet sizes. This assumption makes the analysis quite approximate,

but also more manageable.

We again assume that packets arrive according to a Poisson process with intensity �.

The reasonableness of this assumption will be discussed at the end of this section. We

again assume that the average packet size is T (expressed in amount of time it takes to

play the packet into a channel). In this Section we need to assume that the packet sizes

have an exponential distribution. This assumption is false, but probably less worrysome

than the assumption that the number of packets that can be bu�ered is independent of

their sizes. We de�ne R = �T and � = R

N
. We need to compute the normalizing constant

G =
NX
k=0

Rk

k!
+

QX
k=1

RN+k

N ! Nk
=

NX
k=0

Rk

k!
+
RN

N !

�(1 � �Q)

1� �
: (3.1)

In the model, as long as there is at least one packet in the bu�er, all channels must

be busy receiving a packet. Only when all channels are busy receiving a packet can there

be packets bu�ered.

For 0 � k � N the probability that no packet is bu�ered while exactly k channels are

receiving a packet equals
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Pfk busy; none bu�eredg = Rk

k! G
: (3.2)

For 0 � k � Q the probability that all N channels are busy receiving a packet and in

addition exactly k packets are bu�ered is

PfN busy; k bu�eredg = RN+k

N ! Nk G
: (3.3)

The probability that a packet gets lost therefore is

C(N;R) = Pflossg = RN+Q

N ! NQ G
: (3.4)

This is the Erlang{C loss function. Unlike in case of the Erlang{B formula, the

derivation of the Erlang{C formula needs the assumption of exponential packet sizes.

Unlike in the Erlang{B model, in the Erlang{C model customers (packets) can wait in

the bu�er. When a packet arrives and �nds N � 1 or fewer packets in the system in front

of it, (each occupying one channel), service starts immediately. If the arriving packet

�nds N + Q packets in the system in front of it (N being served, Q waiting), the packet

is discarded. However, if the packet �nds N + k packets in front it, with 0 � k � Q� 1,

the packet joins the waiting room. In that case, its expected waiting time (until service

starts) is (k+1)T

N
. This is the conditional expected waiting time, conditional on k. The

unconditional expected waiting time of a packet therefore is

Q�1X
k=0

rN+k

N ! Nk G

(k + 1)T

N
: (3.5)

Of more interest is the conditional expected waiting time conditional on the waiting

time being positive. (\packets that wait, wait in average ...").
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An interesting choice of Q would be Q = N . In this situation the worst case conditional

expected waiting time would be T : namely, if a packet arrives and �nds N packets \in

service" and N � 1 more waiting in the bu�er. In this case the worst-case conditional

expected waiting time is equal to the expected service time. If we choose this value and

at the same time make sure that 
 is small, then the average waiting time of packets that

must wait is considerable smaller than T .

The assumption of exponentiallity is critical in the derivation of the conditional ex-

pected waiting time.

Given the number of channels N and a highest allowed loss probability 
 we can again

compute the highest allowed load R.

The procedure now is �rst to determine the highest allowed waiting delay, and the

highest allowed drop probability 
. The highest allowed waiting delay determine Q, by

the formula \highest delay = QT

N
". Then we �nd a tra�c intensity R that with the

chosen Q generates drop probability 
.

Techniques similar to those in Appendix A can be used. Details are given in Appendix

B. Also this approximate method relies on the Central Limit Theorem for the Poisson

Distribution. It should give almost exact results for N � R � 30

Figure 2 gives the maximal allowed � for the Erlang{C model with \Q = N", i.e. as

many waiting positions as there are servers (wavelengths). It gives this maximal allowed

load for 
 = 10�6 and for 
 = 10�4.

It is easy to generate more such Figures for other choices of Q, e.g. Q = mN . In that

case the worst possibly waiting time (before service starts) is roughly m times a typical

service time.

The assumption that the arrival process is Poisson is of course untenable. This is

true, among other reasons, because packets are part of larger structures (messages, �les).
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Figure 2: Maximal allowed � as function of N, Erlang{C (Q = N)

A more important reason the Poisson assumption is untenable is the TCP end{to{end

feedback, which is strongly \self-clocked" and makes the tra�c much smoother than

Poisson. The two factors work in opposite directions, with the TCP feedback probably

the stronger factor.

As long as there is no bu�ering (Q = 0, the case of Erlang{B) the Poisson assumption

probably does not introduce a major error in the result. Even if there is bu�ering (Q > 0,

the case of Erlang{C), as long as QT

N
is small, the analysis above probably yields reasonably

good predictions.

When QT

N
becomes a non-trivial fraction of the round{trip time of a typical packet, the

analysis above becomes suspect. In particular, when the average waiting time of a packet

becomes a non{trivial fraction of its round{trip{time, the actual system will probably
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perform much better than the analysis predicts.

On the other hand, we see that even with Q = N , for larger values of N , it already

is possible to achieve utilizations of over 90%. When Q increases to the point where

the Poisson assumption becomes harmfull, the acceptable utilization still remains below

100%! The error in predicted acceptable utilization therefore is limited.

4 Optical Only versus O{E and E{O

Figures 3 and 4 give the maximal allowed � as function of N , comparing the \all optical

case" (Erlang{B, no waiting allowed, Q = 0) with the case where O{E and E{O conversion

is allowed, and thus waiting is allowed. We choose \Q = N", i.e. as many waiting positions

as there are wavelengths.

Figure 3 does this comparison for a maximal allowed drop probability 
 = 10�4. Figure

4 does it for 
 = 10�6.

In the situation of Figure 3 (
 = 10�4), for N = 50 the maximal allowed � values are

:58 and :89 for respectively Q = 0 (Optical Switching Only) and Q = N = 50 (O{E and

E{O, with waiting). For N = 200 these values are :78 and :98. Thus, we see that for the

same drop probability 
 = 10�4 use of O{E and E{O conversion allows the throughput

to increase by a factor 1:53 at N = 50, and by a factor 1:26 at N = 200.

In the situation of Figure 4 the allowed loads for N = 50 are :48 and :82, and for

N = 200 they are are :71 and :95. Thus, we see that for the drop probability 
 = 10�6

use of O{E and E{O conversion allows the throughput to increase by a factor 1:71 at

N = 50, and by a factor 1:34 at N = 200.

The allowed load for the situation with O{E and E{O can be somewhat increased by

increasing Q, say to 2N or to 3N . However, the possible increase is limited: the allowed
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Figure 3: Maximal allowed � as function of N, Optical Only versus mixed

load already is fairly close to 100%.

The main disadvantage of allowing O{E and E{O conversion is the cost of the equip-

ment needed to do the conversion. Other disadvantages are the increased operational

complexity and and increased delay due to waiting.

The main advantage of allowing O{E and E{O conversion is an increase in the allowed

load. i.e. an increase in the possible utilization of the �ber.

Whether the advantage of O{E and E{O converson outweighs the disadvantage thus

has become a reasonably straigthforward economic analysis. This analysis needs to be

done.

When a �ber already exists and the number of wavelengths can still be increased, the

choice is likely to be between increasing the number of wavelengths N , and allowing O{E{
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Figure 4: Maximal allowed � as function of N, Optical Only versus mixed

O conversion. Once the number of wavelengths N has reached its upper limit, the choice

is one between increasing the number of strands of �ber and allowing O{E{O conversion.

5 The TCP Paradigm with general increases and de-

creases

Here a section.

6 Outside the TCP Paradigm

etc.
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A Remarks on the Erlang{B formula

In this appendix we collect some information on the Erlang{B formula:

PfN busyg = B(N;R) =
RN

N !
e�RPN

j=0
Rj

j!
e�R

: (A.1)

A �rst approximation, based on the Central Limit Theorem for the Poisson Distribu-

tion, is

B(N;R) �
RN

N !
e�R

�

�
N+ 1

2
�Rp
R

� : (A.2)

This approximation is good as long as R is \large" and N � R. Actually, it is good

over a wider range: if R is \large"it is a good approximation even if N < R, as long as

R�Np
R

is not too large. If N is large we can can use Stirling's approximation for N !, and

get:

B(N;R) �
�
R

N
expf1 � R

N
g
�N

p
2�N �

�
N+ 1

2
�Rp
R

� =
(� expf1 � �g)N
p
2�N �

�
N+ 1

2
�Rp
R

� : (A.3)

We expect that N > R. If this holds and also N�R >>
p
R (and also \N not small")

we have that

NX
j=0

Rj

j!
� expfRg; (A.4)

or

�

 
N + 1

2
�Rp
R

!
� 1; (A.5)
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and thus

B(N;R) �
�
R

N
expf1� R

N
g
�N

p
2�N

=
(� expf1� �g)Np

2�N
: (A.6)

(A.6) is convenient for numerical work. Before we look at numerical issues, consider

the function

f(x) = x expf1 � xg: (A.7)

Clearly, f 0(x) = (1 � x) expf1� xg; f 00(x) = �(2� x) expf1� xg, and in general

f (k)(x) = (�1)k�1(k � x) expf1 � xg: (A.8)

Thus, f is non{negative, increasing and concave on [0; 1], with f(1) = 1; f 0(1) =

0; f 00(1) = �1. We see that for � < 1 �xed, B(N;R) goes to zero exponentially fast if

N " 1. Even if � = 1 B(N;R) still goes to zero if N " 1, but now it goes to zero quite

slowly. Of course, when N " 1 while R is constant (in stead of �), B(N;R) goes to zero

much faster, because now � decreases while N increases.

Instead of �nding R = R(N; 
) such, that B(N;R) = 
 we can compute x = x(N; 
)

such, that

f(x) =
�


p
2�N

� 1

N ; (A.9)

and then let � = x;R = Nx. Since f(:) is positive, increasing, and concave, we can

use a Newton method to solve (A.9) iteratively, with very fast convergence. We see that

if
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p
2�N > 1 (A.10)

then the (estimated) loss probability is less than 
 for all R � N (the loss probability

estimated by (A.6) is always less than 
). If

0 � 

p
2�N � 1 (A.11)

there is a unique solution x(N; 
) to

(f(x))N = 

p
2�N; 0 � x � 1: (A.12)

It is not clear which of (A.9), (A.12) is the more useful for numerical purposes. If

the resulting x value is close to 1, (A.12) gives a nice approximation. For x close to one,

f(x) = 1 � (1�x)2
2!

� 2(1�x)3
3!

� O((1 � x)4), (f(x))N � expf�
�
(1�x)2

2!
+O((1 � x)3)

�
Ng,

hence

(1 � x) � 1p
N

s
log

1


2
� log 2�N: (A.13)

The last approximation is good only as long as for the resulting x indeed (1 � x) is

small. If log 2�N << 2 log 1


we have, with the same proviso, the approximation

(1� x) �
vuut2 log 1




N
: (A.14)

For N larger, (1� x) goes to zero slightly faster.

When (A.13) (or (A.14)) gives a value of x not close enough to one, we can numerically

solve (A.9) or (A.12). For example, compute A =
�


p
2�N

� 1

N , choose x0 = 0, and iterate
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xk+1 = xk +
A� xk expf1 � xkg
(1� xk) expf1� xkg : (A.15)

Since use of (A.13) gave a value of x not too close to one, the iteration does not lead

to a problem with division by a very small number.

Thus we know how to solve � as function of N and 
 from (A.6). However, we want

to solve � as function of N and 
 from (A.3). In order to this we solve � from (A.6) with

N and 
1. Once � has been obtained we compute the \actual" drop probability 
2 from

(A.3), and then replace 
1 by 
1



2
, and repeat the procedure. In the �rst iteration we

choose 
1 = 
. After very few iterations we �nd that 
2 is extremely close to the target


, so that we essentially have solved � from (A.3).

B Remarks on the Erlang{C formula

As before, we de�ne

D(N;R) =
NX
k=0

Rk

k!
e�R; (B.1)

and

�(x) =
Z x

�1

e�
y2

2p
2�
dy; (B.2)

so that for R large and (for example) N � R

D(N;R) � �

 
N + 1

2
�Rp
R

!
: (B.3)
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Using the Central Limit Theorem for the Poisson Distribition, and Stirlings' approxi-

mation for N ! we get

C(N;R) =
RN+Q

N !NQ
�PN

k=0
Rk

k!
+ RN

N !

�(1��Q)
1��

� �

�Q (�e1��)
N

p
2�N �

�
N+ 1

2
�Rp
R

�
+ � 1��

1��Q (�e1��)
N
; (B.4)

where 1��Q
1�� = Q if � = 1. If � 6= 1 (B.4) can be re-written as

pdrop � (1� �)�Q (�e1��)
N

(1� �)
p
2�N �

�
N+ 1

2
�Rp
R

�
+ �(1 � �Q) (�e1��)N

: (B.5)

For a given Q and 
 (
 is the target value for pdrop we now can solve � from (B.4) or

(B.5).

Following the example of Appendix A we instead choose (in a way to be explained

next) a 
1 and solve (by a method to be explained) � from

�Q(�e1��)Np
2�N

= 
1: (B.6)

For the resulting value of � we use (B.4) or (B.5) to compute 
2, the \actual" pdrop

for that value of �. Next, we solve (B.6) again, but now with 
1 replaced by 

1

2
. This

procedure is repeated until 
2 is very close to the true target 
. In the �rst iteration we

use of course 
1 = 
. We found that we never needed more than 4 iterations to get 
2

within 2 decimals of 
.

It still remains to show how to solve � from (B.6).

De�ne
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r =
N

N +Q
; g(x) = xer(1�x): (B.7)

Then (B.6) reduces to solving x from

g(x) =
�

1
p
2�N

� 1

N+Q
= A: (B.8)

Since 0 < r < 1 and g is increasing and concave for x < 1

r
, with g(0) = 0, g(1) = 1,

we know that as long as 0 � A � 1 (B.8) can be solved by the scheme

x0 = 0; xk+1 = xk +
A� g(xk)

g0(xk)
: (B.9)

We see that at the end the algorithms for the Erlang{B and Erlang{C inverse compu-

tations are essentially the same.

For small values of N (N < 30? does this need investigation?) It may be worth

comparing the approximate results with those from exact computations.

C Trunk Reservation and the kick{me bit

Suppose we have a bundle of N channels, with a Poisson Process (intensity �) of arriving

packets, and mean packet size T (service time on a channel). Let R = �T . Let the service

times of the packets be independent, identically distributed random variables that have

the exponential distribution with expected value T .

Suppose at some point exactly k < N channels are busy, and a new packet arrives.

We can let the new packet into the system (so that the new number of occupied channels

becomes k+1). What is the probability that a packet blocking will occur during the time

the new packet occupies a channel?
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This probability of course depends on the time the packet will occupy the channel. If

we do not know that time, and assume it has an exponential distribution with expected

value T , the probability that the packet causes a future loss equals

B(N;R)

B(k;R)
(C.1)

In case of circuit switched telephony we used this rule. That made sense: the call was

routed before we knew the holding time. In case of packet routing we know the size of

the packet at hand.

It probably is possible to do similar analysis as function of the packet size. That looks

like a \do{able" problem.

It is possible to give simple approximations to (C.1). De�ne

D(N;R) =
NX
k=0

Rk

k!
e�R; (C.2)

so that for N � R and R " 1

D(N;R) � �

 
N �Rp

R

!
=
Z N�Rp

R

�1

e�
y2

2p
2�

dy: (C.3)

@@@ (Actually, (C.3) still holds if N < R as long as R � N is not large compared

with
p
R. Maybe even a bit more general than that, I do not recall the details. tjo) @@@

If R � k � N and R " 1 we therefore have @@@ (please verify, I am quoting from

memory, tjo) @@@

B(N;R)

B(k;R)
�
�
R

N

�N�k �
�
k�Rp
R

�
�
�
N�Rp

R

�
s
k

N

 
k

N

!k
eN�k: (C.4)
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If N � k << k � N this reduces to

B(N;R)

B(k;R)
�
�
R

N

�N�k �
�
k�Rp
R

�
�
�
N�Rp

R

� ; (C.5)

and if N � k <<
p
R < R � k � N this further reduces to

B(N;R)

B(k;R)
�
�
R

N

�N�k
= �N�k: (C.6)

It is quite possible that in many situations (C.6) is su�cient for decision making.

@@@ But again: I am not sure it is worth the complication. tjo. @@@
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