
PATH SELECTION AND BANDWIDTH

ALLOCATION IN MPLS NETWORKS

James E Burns and Teunis J Ott

Telcordia Technologies Inc, 445 South Street, Morristown NJ 07960-6438, USA

Anthony E Krzesinski and Karen E Müller

Dept. of Computer Science, University of Stellenbosch, 7600 Stellenbosch,
South Africa

Abstract

Multi-protocol Label Switching extends the IP destination-based routing proto-
cols to provide new and scalable routing capabilities in connectionless networks
using relatively simple packet forwarding mechanisms. MPLS networks carry traffic
on virtual connections called label switched paths. This paper considers path selec-
tion and bandwidth allocation in MPLS networks in order to optimize the network
quality of service. The optimization is based upon the minimization of a non-linear
objective function which under light load simplifies to OSPF routing with link met-
rics equal to the link propagation delays. The behavior under heavy load depends
on the choice of certain parameters: It can essentially be made to minimize maximal
expected utilization, or to maximize minimal expected weighted slacks (both over
all links). Under certain circumstances it can be made to minimize the probability
that a link has an instantaneous offered load larger than its transmission capacity.
We present a model of an MPLS network and an algorithm which optimally dis-
tributes the traffic among a set of active paths and reserves a set of back-up paths for
carrying the traffic of failed or congested paths. The algorithm is an improvement
of the well-known flow deviation non-linear programming method. The algorithm
is applied to compute optimal LSPs for a 100-node network carrying a single traffic
class. A link carrying some 1,400 routes fails. The back-up paths are activated and
we compare the performance of the path sets before and after the back-up paths
are deployed.

Key words: Internet Protocol, label switched path, multi-protocol label switching,
quality of service

1 This work was supported by grants from the Telcordia Research Horizons Pro-

Preprint submitted to Elsevier Preprint 27 April 2002

1 Introduction

The Internet is becoming the ideal platform to support all forms of modern
communications including voice, data and multimedia transmissions. However,
the standard IP routing protocols were developed on the basis of a connec-
tionless model where routing decisions are based on simple metrics such as
delay or hop count which leads to the selection of shortest path routes. De-
spite its ability to scale to very large networks, this approach provides only
rudimentary Quality of Service (QoS) capabilities which cannot be used to
provide scalable service level agreements for bandwidth intensive applications
in modern networks.

Multi-protocol label switching (MPLS) [1] extends the IP destination-based
routing protocols to provide new and scalable routing capabilities. MPLS rout-
ing/switching is achieved by forwarding IP packets along virtual connections
called label switched paths (LSPs). LSPs are set up by a label distribution
protocol which uses the information contained in layer 3 routing tables. The
LSPs form a logical network that is layered on top of the physical network to
provide connection oriented processing above the connectionless IP network.

This paper presents a model of flow optimization in MPLS networks. We
address the following questions related to the optimal distribution of traffic
flows among LSPs in an MPLS network:

• how is the set of paths computed,
• how is a subset of the computed paths selected to carry the offered traffic,
• how is the traffic distributed among the selected paths, and
• how useful are the remaining unselected paths as backups to be used in the

event of traffic overload and/or path failure.

We formulate the problem of finding an optimal set of LSPs and optimally
allocating bandwidths to these LSPs as a constrained non-linear programming
problem (NLP) which minimizes an appropriate objective function. In quali-
tative terms the goal is to find a set of LSPs and a set of target bandwidths
for these LSPs such that if the traffic forecasts are exact and all target band-
widths of LSPs are achieved, the system will carry all the offered traffic, no
link is too heavily utilized, and the carried load is appropriately distributed.

Several previous studies (see [2–4] and the references therein) have formulated
the bandwidth allocation problem in connectionless networks as an NLP us-
ing the M/M/1 formula as a penalty function to predict the queueing delay

gramme, the South African National Research Foundation, Siemens Telecommunica-
tions and Telkom SA Limited. The present address of TJ Ott is: Dept. of Computer
Science, New Jersey Institute of Technology, Newark NJ 07102, USA.

2

on individual links, and a load balancing scheme is considered optimal if it
minimizes the total delay over the network. However, the delay in an internet
is limited by the drain time of buffers. Furthermore, TCP congestion avoid-
ance and RED (Random Early Discard) schemes (see [5,6] and the references
therein) make it possible to have a very high sustained utilization on a link
with simultaneously only moderate packet loss and only moderate variability
in buffer occupation. The use of an M/M/1 queueing delay in the penalty
function is therefore highly suspect or even incorrect. The issue is not only
that the M/M/1 formula is poor in predicting actual queueing delay, but that
queueing delay is moderately insensitive to traffic intensity on a link. Mecha-
nisms like weighted fair queueing (WFQ) and class-based WFQ will make the
queueing delay even more independent of link utilizations.

Our approach to the NLP and its solution has several novel aspects. First, we
present a penalty function that affords an appropriate representation of the
actual quality of the network. Under light load our penalty function simplifies
to OSPF routing with link metrics equal to the link propagation delays. Un-
der heavy load the behavior depends on the choice of certain parameters: It
can essentially be made to minimize maximal expected utilization, or to max-
imize minimal expected weighted slacks (both over all links). Under certain
circumstances it can be made to minimize the probability that a link has an
instantaneous offered load larger than its transmission capacity.

Second, we present an efficient technique to solve the NLP. We have adapted
an existing solution technique, namely the flow deviation method [2–4] to
minimize our objective function. Our implementation of the flow deviation
algorithm differs from the standard method in that we identify a working
set of LSPs and re-distribute bandwidth over these LSPs until it becomes
advantageous to admit new LSPs to the working set. Appropriate numerical
methods and data structures are used to achieve an efficient implementation
of the NLP solver. The advantage of our flow deviation method is that, for the
objective function we use, our flow deviation method is several times faster
than the standard flow deviation method.

The flow deviation algorithm computes optimal flows in connectionless net-
works: the objective function is a sum of link penalty functions and the flow
is optimally allocated among the links. Recently much attention has been
given to adapting optimization algorithms, which were originally developed
for circuit switched operations, so that they can be applied to logically fully
connected networks which are layered on top of connectionless networks. For
example, the capacity routing algorithm (see [7] and the references therein)
discovers and capacitates optimal routes in multi-service connection-oriented
networks. Here the objective function expresses an end-to-end service measure
such as the call blocking probability. Bandwidth is optimally allocated among
the discovered routes to form virtual path connections which are either shared

3

among the traffic classes (service integration) or separate VPCs are allocated
to each service class (service separation).

The rest of the paper is organized as follows. Sect. 2 presents a model of
an MPLS network, definitions of feasible and optimal LSP bandwidth as-
signments, a description of the LSP design problem whose solution yields an
optimal set of LSPs and optimal LSP bandwidth assignments, and a descrip-
tion of a penalty function which under light load simplifies to OSPF routing
and depending on certain parameter choices under heavy load optimizes one
of a range of performance criteria. Sect. 3 describes our implementation of
the flow-deviation algorithm to solve the LSP design problem. Sect. 4 applies
the flow deviation method to compute an optimal LSP set for a model of a
100-node network. The characteristics of the LSP set are investigated. Our
conclusions are presented in Sect. 5.

2 The Model

Consider a communications network with N nodes and L links. Let N =
{1, 2, . . . , N} denote the set of nodes and let L = {1, 2, . . . , L} denote the
set of links. The nodes represent the routers in the MPLS-capable core of a
network. Some nodes are connected by a link. The links are directed: each link
has a starting node and an ending node which are routers from the set N .

Each node m ∈ N is both an ingress router and an egress router. Each node
is an ingress router because traffic from the non MPLS-capable part of the
network enters the MPLS network at that point. Each node is an egress router
because traffic to the non MPLS-capable part of the network exits from the
MPLS network at that point.

Let d(m,n) denote the predicted demand (offered load) of traffic that wants to
enter the MPLS network at node m and wants to exit at node n. We assume
that the demands d(m,n) and the link capacities bi are such that a feasible
solution exists. The definition of feasibility will be given shortly. If a feasible
solution does not exist then systematic drop (discard) of traffic is necessary,
and it is an interesting question what traffic needs to be dropped to minimize
the damage. We consider only a single class of service.

2.1 Paths and Path Bandwidths

A path P is a sequence of links L1, L2, . . . , LHP where HP ≥ 1 is the hop
count of the path P . In our terminology a route and a path and an LSP (label

4

switched path) are synonymous. No path traverses the same link or the same
node more than once. The algorithms that follow in later sections ensure that
no paths contain cycles. Let P denote the set of all such non-cycling paths.
Since any path P contains no cycles, the sequence of links traversed by a path
P can be interpreted as a set denoted by LP . Let P(i) denote the set of paths
that utilize link i. Let P(m,n) denote the set of paths from node m to node n
with m 6= n.

2.2 Feasibility and Optimality

Each path P will be assigned a target bandwidth BP ≥ 0. The goal is to select
these target bandwidths in an in some sense optimal way. Let B = (BP)P∈P
denote a set of target bandwidths. B is said to be feasible if the following two
constraints hold:

(1) For each pair of nodes (m,n)

∑

P∈P(m,n)

BP = d(m,n) (1)

so that if the traffic forecasts d(m,n) are exact, and if the target bandwidth
is achieved for all paths, all of the offered traffic is carried.

(2) For each link i

∑

P∈P(i)

BP ≤ bi (2)

so that no link has an offered (target) load greater than its capacity.

We next choose a definition of optimality. Let

fi =
∑

P∈P(i)

BP

denote the target flow on link i and let ρi = fi/bi denote the target utilization
of link i. Let si = bi − fi denote the target slack on link i. Constraint (2)
implies that all slacks must be non-negative.

Let Fi(fi) denote an objective function for link i when the link carries a flow
fi. The LSP design problem is specified in terms of the following constrained
non-linear optimization problem: Find a set of feasible target bandwidthsBopt

that minimizes the objective function

F (B) =
∑

i

Fi(fi) (3)

5

subject to the constraints (1) and (2) where the sum in Eq. (3) is over links i
with bi > 0. Bopt is said to provide an optimal solution to Eq. (3). Note that
the optimal link flows fi are almost certainly unique although the optimal
bandwidths B are usually not: this matter is discussed in Appendix A.

2.3 The Objective Function

The link penalty functions Fi(x) used in the LSP design problem have at least
three roles. First, they must to a reasonable degree represent an intuition of
what constitutes a “good” load balancing scheme. Second, they must be an
efficient way of managing constraints, in particular the constraint that no link
carries a load larger than, or even close to, its bandwidth. Third, the link
penalty functions must make it possible to efficiently find an optimal solution
to the LSP design problem.

The flow deviation algorithm requires that the link penalty functions Fi(x) be
increasing and convex on [0, bi) with limx↑bi Fi(x) = +∞. The latter require-
ment necessitates a minor change to the definition of feasibility: a solution is
said to be feasible if fi < bi (strict inequality) on all links i. It is also convenient
to make a slightly stronger demand on the functions Fi(x) and require that
each Fi(x) be “strongly monotone” on the interval [0, bi) so that the objective
functions are non-negative on [0, bi) and their derivatives with respect to flow
are positive on (0, bi).

Previous studies of the flow deviation algorithm [2–4] used

Fi(x) = Mi
x

bi − x
(4)

as a link penalty function. If we assume that the offered load to each link i
is a Poisson process of packet arrivals and that packets have independent,
identically distributed sizes with exponential distribution and average Mi,
and that there is an infinite buffer, and that the resulting utilization of the
link is x/bi, then the objective function (4) is the product of the flow x and
the average delay (waiting and service both included, but propagation delay
excluded). With the M/M/1 assumptions above, the sum of the link penalty
functions is a measure of the average total network delay.

However, in the modern Internet with TCP, and RED and all its variations, it
is possible to have very highly utilized links (utilization practically one) and
still low delay and low loss in the buffer: all delay is moved to the edge of the
network. The same holds for example for ATM with ABR, in particular the ER
version of ABR. Eq. (4) is probably no longer a suitable link penalty function.
Given these concerns, we present a link penalty function with properties which

6

make it suitable for use in an objective function whose minimization will yield
routes and bandwidths that correspond closely to the optimal operation of a
modern internet. Our choice of link penalty function is

Fi(x) = cix+ ησi

(

σi
bi − x

)ν

(5)

where link i has a bandwidth bi ≥ 0, a weight factor σi > 0 with η > 0, ν > 1
and Fi(x) =∞ if x ≥ bi. The factor ci is explained below. The function (5) is
strongly monotone and the first derivative of the link penalty function is

F ′i (x) =
d

dx
Fi(x) = ci + ην

(

σi
bi − x

)ν+1

. (6)

Let τi ≥ 0 denote the propagation delay on link i. Set F ′i (0) = τi. Then
ci = τi − ην (σi/bi)

ν+1. The properties of the link penalty function (5) under
light and heavy load are discussed in the following section.

2.4 Behavior under Light and Heavy Load

With reference to the link penalty function (5) we choose η positive but small
so that if a feasible solution exists for which all flows fi are small and all link
utilizations fi/bi are low – in which case the system is said to be uniformly
lightly loaded – then the penalty function (5) will yield routes that are in
agreement with OSPF routing where the propagation delays are the OSPF
metrics of the links.

If the system is not uniformly lightly loaded then the penalty function enforces
a distance from the barrier bi. The parameter η determines when the barrier
begins to dominate the initial linear behaviour of the penalty function. A larger
value of η causes the penalty function to rise earlier when the flow approaches
the barrier. The parameter ν determines the behaviour of the penalty function
as it approaches the barrier. A larger value of ν makes the penalty function
steeper when the flow approaches the barrier.

Eq. (6) shows that if ν is large and for some link i the entity

si
σi

=
bi − fi
σi

becomes both small in the absolute sense, and also becomes the smallest among
all the links, then the dominating objective of the NLP becomes to increase
that entity. We call si/σi the weighted slack of link i. Thus if ν is large then the
NLP maximizes the minimal weighted slack, at least as long as that minimal

7

200000

400000

600000

800000

1e+06

200000 300000 400000

Fi(x)

link flow x

σ = 40000 b = 400000

01243

(0) η = 1 ν = 1.0 τ = 0.0 M/M/1
(1) η = 1 ν = 2 τ = 0.5
(2) η = 1 ν = 2 τ = 1.0
(3) η = 10 ν = 2 τ = 1.0
(4) η = 10 ν = 5 τ = 1.0

Fig. 1. Examples of the penalty function

weighted slack is small. The magnitude of the minimal weighted slack depends
on ν. Even better: as long as ν is sufficiently large, the NLP attempts to
perform a “lexicographic maximization” of all small weighted slacks: first it
maximizes the smallest weighted slack, then the next smallest, and so on.

The choice of σi is of interest. For example, if we choose σi = bi then we
minimize the maximal utilization, as long as that maximal utilization is large.
An interesting situation also arises when all bi (insofar positive) are large. In
that case we can choose for σi an estimate of the standard deviation of the
instantaneous offered load to link i in the situation where the target load is
somewhat close to bi. In that case the weighted slack is the “distance” from the
target flow fi to the bandwidth bi, measured in units of standard deviations.
Assuming a Central Limit Theorem, and assuming that the distance as defined
above is at least several standard deviations, then by maximizing the minimal
weighted slack we are also essentially minimizing the maximal probability that
the offered load to a link is larger than its bandwidth.

Fig. 1 plots the penalty function (5) of a link i as a function of the link flow x.
The link bandwidth bi = 400, 000 and the weight σi = bi/10 = 40, 000. These
values are related to the parameters of a 50-node network model [8] where
the average link capacity is 190,689 ±81,026 and the average flow carried on
a link is 95,265 ±48,414.

With reference to Fig. 1 plot (0) shows the M/M/1 penalty function using
related parameters. Plots (1) through (4) are for the penalty function (5). Plot
(1) shows the effect of τi = 0.5, η = 1 and ν = 2. Plot (2) shows the effect of
increasing τi from 0.5 to 1.0. The parameter η determines when the barrier bi
begins to dominate the initial linear behaviour of the penalty function. Plot

8

(3) shows that the penalty function begins to rise towards the barrier earlier
when η is increased from 1 to 10. The parameter ν determines the behaviour
of the penalty function as it approaches the barrier bi: increasing ν increases
the steepness of the rise. Plot (4) shows the effect of increasing ν from 2 to 5.

2.5 A Flow Optimization Model

Path identification and traffic distribution are the two most important pro-
cesses involved in flow optimization. A flow optimization model may be based
on either a reactive scheme where path identification and traffic distribution
are computed simultaneously to achieve an optimal traffic flow allocation,
or a pre-planned model where path identification and traffic distribution are
performed separately.

We present a flow optimization model which consists of three parts:

Path identification. Path sets are computed for each source-destination
pair using a reactive method.

Path selection. The path set is partitioned to yield a set of active paths
to carry the offered traffic and a set of back-up paths for fault recovery or
congestion avoidance.

Traffic distribution. The flow deviation model is used to move the offered
traffic from higher cost paths to lower cost paths.

See [9] for a description of a flow optimization model based on a pre-planned
path discovery model.

3 The Flow Deviation Algorithm

This section presents an implementation of the flow deviation algorithm [2–4]
which minimizes a convex objective function and thus converges to a global
optimum.

The algorithm executes in a loop where each iteration of the loop implements
one step of the algorithm. During each step the algorithm computes the current
set of shortest (least cost) paths from all sources to all destinations. An optimal
amount of flow is diverted from the current set of LSPs to the shortest paths.
Those shortest paths that are not already in the LSP set are added to the
LSP set, the link costs are updated (the link costs have changed because
the link flows have changed) and the next step of the algorithm is executed.
The loop continues until flow re-distribution achieves no further reduction in

9

the objective function. A small worked example of the operation of the flow
deviation algorithm can be found in [3].

3.1 The Algorithm

In the MPLS context the flow deviation algorithm incrementally improves the
set P of LSPs and improves the distribution of traffic over multiple paths
in P from the same source to the same destination. Improving P mainly
consists of adding paths that have, or are likely to have, lower cost than
the existing paths from the same source to the same destination. Improving P
may involve discarding paths P that are known not to have positive BP in any
optimal solution, or are not likely to have such a positive flow. Discarding non-
promising paths is not necessary for convergence but significantly decreases
the computational effort.

The algorithm executes in a loop. Each iteration of the loop implements one
step which is identified by a step index k.

(1) Initialize: Set k = 0. For each link i set the link flow fi = 0. Compute the
least cost path P = Pe(m,n) connecting each node pair (m,n). Set the
target bandwidth BP = d(m,n). If necessary call statement (6) to enforce
a feasible solution. Initialize the path set P = ∪(m,n)Pe(m,n).

Statements (2) through (8) below constitute the body of the loop.

(2) For each link i compute the link cost CL
i = F ′i (fi). For each path P

compute the route cost CR
P =

∑

i∈LP C
L
i .

(3) Compute a feasible direction ∆ = (∆P)P∈P and an improved path set
P. The calculation of an improved path set and a feasible direction is
discussed in Sect. 3.2.

(4) Convergence test: If no feasible direction can be found then optimality has
been achieved and the algorithm halts. This stopping rule is theoretically
correct but of no practical value. A practical stopping rule is discussed
in Sect. 3.4.

(5) Compute improved path flows B: Compute a value of x such that
BP := BP + x∆P yields a value F (B) of the objective function which is
a strict improvement over the value of the objective function computed
in the previous step, and in the direction ∆ is optimal. This computa-
tion is called the “line search” for x. The calculation of x is discussed in
Sect. 3.3. In qualitative terms: a very small positive x value always gives
an improvement. We increase x either until the objective function stops
decreasing, or until a path flow BP goes to zero in which case the path P
leaves the set P.

(6) Enforce a feasible solution: If the target bandwidths B are not feasible

10

then for each link i set bi := αbi where α = maxi(1.05fi/bi). The solution
B is now feasible. 2

(7) Compute improved link flows: For each link i compute fi := fi + xδi
where δi :=

∑

P∈P(i) ∆P .
(8) Loop statement: k := k + 1 and go to statement 2.

3.2 Choosing a Feasible Direction

A feasible direction is a map ∆ = (∆P)P∈P with the following properties:

• the traffic demand d(m,n) offered to each node pair (m,n) is constant there-
fore

∑

P∈P(m,n)
∆P = 0,

• an empty path cannot have its bandwidth allocation lowered so that if
BP = 0 then ∆P ≥ 0,
• a feasible direction will lower the network cost so that

∑

P∈P ∆PC
R
P < 0.

We present two methods for computing a feasible direction. The first method,
the so-called global method, may add paths to the set P. The second method,
the so-called local method, does not add paths to the set P: in fact it is likely
to remove paths from P.

3.2.1 The Global Method

Given a feasible solutionB and the current link costs CL
i , compute the shortest

path Pe(m,n) connecting each source-destination (S-D) pair (m,n). There
may be several such paths in which case a tie-breaking mechanism is needed.
This path may already be in the set of known paths P(m,n) and have a positive
flow BPe(m,n) > 0. If the path is not in P(m,n) then it is added to P(m,n). For
each P ∈ P(m,n) compute

∆P =

{

−BP P ∈ P(m,n) \ Pe(m,n)
d(m,n) −BP P = Pe(m,n).

3.2.2 The Local Method

Given a feasible solution B and the current link costs CL
i and the route costs

CR
P , choose a subset R(m,n) from P(m,n) for each S-D pair (m,n) as follows: all

routes P ∈ P(m,n) with BP > 0 are in R(m,n); optionally some or all routes

2 When the flow deviation algorithm terminates then α = 1 else the solution B is
not feasible.

11

P ∈ P(m,n) that have the minimal value of CR
P for all P ∈ P(m,n) may be

included, even those with BP = 0; no other paths are included in R(m,n).

Let R = ∪(m,n)R(m,n) denote the set of active paths. R includes the paths P
that have BP > 0 and in addition R may contain some paths P that, because
of their low current cost compared with other active paths from the same
source to the same destination, are likely to be assigned a positive BP .

Let R(m,n) = |R(m,n)| denote the number of active paths that connect node m
to node n. Let

CS
(m,n) =

∑

P∈R(m,n)

CR
P .

For each P ∈ R(m,n) compute

∆P = CS
(m,n) −R(m,n)C

R
P . (7)

Thus if there are for example two routes from node m to node n then Eq. (7)
will decrease the flow on the more costly route and increase the flow on the
cheaper route (at the same rate), and the rates of change are proportional
to the difference in route costs. The ideal situation would be that where all
node-pairs (m,n) with two routes will reach their cross-over point where costs
become equal at about the same time (for about the same value of x).

Reducing the size of the path set P substantially improves the performance of
the flow deviation algorithm. The next section describes a method to quickly
remove many paths from P that are unlikely to belong to the final optimal
set of paths.

The Local Method: Removing Inferior Paths

Given a feasible direction ∆, compute for each S-D pair (m,n)

xRmax(m,n) = min
P∈R(m,n):∆P<0

BP

|∆P |
(8)

where xRmax(m,n) = +∞ if ∆P = 0 for all P ∈ R(m,n). In the line search, if
x grows to xRmax(m,n) then the flows on one or more of the routes in R(m,n)

will decrease to zero, and that route would be expelled from P. This mecha-
nism with high probability expels at most one route per iteration. We have a
mechanism to improve this:

Choose a parameter x̂ ≥ 0. For those S-D pairs (m,n) with xRmax(m,n) < x̂

12

we re-scale

∆P := ∆P
xRmax(m,n)

x̂
(9)

for all P ∈ R(m,n). Compute

xRmax = min
(m,n)

xRmax(m,n)

using the values of xRmax(m,n) computed in Eq. (8) with the re-scaled ∆ values
as computed in Eq. (9). Now xRmax ≥ x̂ and if Eq. (9) is applied at least once
then xRmax = x̂. The result now is that no path in R loses all its flow until x
increases to xRmax, and for x = xRmax a potentially large number of paths all
lose all their flow.

We proceed as follows: initialize x̂ = 0 so no re-scaling occurs after Eq. (7)
has computed a feasible direction ∆. If Eqs. (11) and (12) below determine
x = xmax = xRmax, (i.e. the optimal x is one that causes elimination of at least
one route), calculate

x̂ = 2xRmax

for use in the next iteration of the flow deviation algorithm. Else (if the optimal
value of x does not cause elimination of any route) we set x̂ = 0 for the next
iteration of the flow deviation algorithm. Once the correct set of paths has
been found, x̂ is likely to remain at zero.

3.2.3 A Mixed Method

It is likely that in the optimal solution each S-D pair (m,n) will be connected
by a small number of paths P ∈ P(m,n) and these paths will all have the same
route costs. It is to be expected that after a while the shortest path algorithm
will keep returning paths from that small set. Once the algorithm is in this
situation the use of the local method seems preferable.

The local and global methods can be combined as follows. The flow deviation
algorithm initially iterates using the global method until the shortest path
algorithm finds no new paths.

The flow deviation then alternates between the local and the global methods
as follows: an iteration of the global method is followed by k iterations of the
local method (k ≥ 0) and then another iteration of the global method. If that
new iteration of the global method finds a new path, it is followed by zero
iterations of the local method. Otherwise, it is followed by k + 1 iterations of
the local method.

13

The algorithm thus alternates between the global and local methods until the
stopping rule in Sect. 3.4 below is triggered.

3.3 The Line Search

In this section we compute a value of x which yields an improved solution

BP (x) = BP + x∆P (10)

for all P ∈ P. Define
xLmax = min

i:δi>0

si
δi

where xLmax = +∞ if δi ≤ 0 for all i. If x grows to xLmax < ∞ then the slack
on one or more links will equal zero. Thus we have the constraint x < xLmax.
Next define

xRmax = min
P :∆P<0

BP

|∆P |
.

It is impossible that ∆P ≥ 0 for all P . If x grows to xRmax then the flows on
one or more routes in P will decrease to zero. Thus we have the constraint
x ≤ xRmax.

Set xmax = min(xLmax, x
R
max). With an abuse of notation, we wish to find a

value of x ∈ [0, xmax] which minimizes

F (x) =
∑

i

Fi(fi + xδi).

Setting y = fi + xδi and taking derivatives we obtain

F (k)(x) =

(

d

dx

)(k)

F (x) =
∑

i

(δi)
k

(

d

dy

)(k)

Fi(y).

Since the functions Fi(·) are strongly monotone, even derivatives of F (x) are
positive and odd derivatives of F (x) are strictly increasing. If

xRmax < xLmax (11)

then xmax = xRmax. In that case, compute

F ′(xmax) = F (1)(xmax) (12)

If Eq. (11) holds and F ′(xmax) ≤ 0 then xmax is the optimal value for x. In
this case, in updating the feasible solution, one or more routes have their flow
reduced to zero and these routes may be removed from P.

14

If Eq. (11) does not hold, or if it holds but F ′(xmax) > 0 then we need to
find the value of x ∈ [0, xmax) where F ′(x) = 0. Because the even derivatives
of F (x) are positive we can use the Newton-Raphson method [10] to find the
value of x.

3.4 The Stopping Rule

The algorithm requires a stopping rule to determine the iteration k when
the algorithm has converged. We can stop when either |F ′(xk+1)− F ′(xk)| or
|xk+1−xk| has been close to zero for some time in which case further iterations
will yield no improvement in the solution. We can use a combination of these
two criteria. Because even derivatives of F (·) are positive, the sequence (xk)
will become monotone decreasing or increasing. It may be safe not to stop
until the sequence has been monotone for some time and one or both of the
other conditions above is satisfied.

3.5 Comparing the Local and Global Methods

The global method. The global method computes the shortest paths be-
tween all S-D pairs each time a new feasible direction is calculated. The short-
est path calculation has complexity O(N3) where N is the number of nodes
in the network. After each shortest path calculation the global method needs
to check if the shortest paths are already in the set P.

The choice of direction can lead to convergence problems. For many S-D pairs
there are, in the optimal solution, several paths with equal costs and each path
carries a significant flow. When close to the optimal solution, one of these paths
will have the least cost. The global method will move flow from the slightly
more costly path to the slightly less costly paths. With high likelihood, in the
next iteration the previous slightly more costly path has become the slightly
less costly, and the direction of the transfer of flow is reversed: the algorithm
oscillates.

The local method. The local method for choosing a feasible direction has
computational complexity O(R(m,n)) per S-D pair (m,n).

Paths which are likely not to carry a flow in an optimal solution are removed
from the set of active flows by driving their flows to zero. If we had not used the
refinement introduced in Sect. 3.2.2 then with near certainty the local method
will remove one path per iteration or worse: not every iteration need eliminate
one such flow. If there were a large number of such flows this could, in the
absence of the above refinement, cause a major slow-down in the algorithm.

15

0

10

20

30

40

50

60

70

80

90

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

nu=40

P
S

frag
rep

lacem
en

ts

η = 1
ν = 2
ν = 3
ν = 4
ν = 10
ν = 20
ν = 30

ν
=

5
0

link utilization ρ

nu
m

be
r

of
lin

ks

0

20

40

60

80

100

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

eta=20

P
S

frag
rep

lacem
en

ts

ν = 2
η = 1
η = 2
η = 3
η = 4
η = 5
η = 10

link utilization ρ

nu
m

be
r

of
lin

ks

Fig. 2. Distribution of the link utilization ρ

3.6 Implementation Issues

Each time the global method is invoked it calculates the shortest paths con-
necting all S-D pairs and checks whether the current set of shortest paths is
already in P. These calculations are computationally expensive. The short-
est paths are computed using Floyd’s algorithm – see [11] and the references
therein for a discussion of the relative merits of several well-known shortest
path algorithms. Each path P is stored in a table which is accessed via a hash
index computed over the link set LP .

4 An Application

This section presents a numerical study of MPLS path selection in a model
of a 100-node network with 244 uni-directional links and 1 traffic class.
The links are capacitated with 6,515,881 units of bandwidth. A total of
250,000 units of flow are offered to the 9,900 S-D pairs. A description of
the model with link capacities and offered traffics can be found at the URL
http://www.cs.sun.ac.za/projects/COE/models.zip.

4.1 The Choice of Penalty Function Parameters

Fig. 2 compares the link utilization distributions computed by the global flow
deviation method for several values of the penalty function (5) parameters η
and ν. Given that the link utilization distribution (for the 100-node model) is
relatively insensitive to the values of η and ν, the results presented in the rest
of this section are for η = 1, ν = 2 , τi = 1 and σi = bi/10.

16

4.2 The Kleinrock versus the Bertsekas-Gallager Methods of Flow Deviation

Two variants of the standard flow deviation algorithm have appeared in the
literature. Kleinrock’s implementation [4] uses a line search to compute the
optimal amount of flow to move, and flow is moved for all S-D pairs at once.
Bertsekas and Gallager [2] developed a variant of the flow deviation algorithm
which avoids a computationally expensive line search and instead estimates
the amount of flow to be moved – the flow is moved for one S-D pair at a time.
The main advantage of the Bertsekas-Gallager algorithm is that it is compu-
tationally less expensive than Kleinrock’s algorithm and it computes better
values for small moves near the optimal point where Kleinrock’s algorithm can
oscillate. Kershenbaum [3] developed a technique for scaling the link capaci-
ties to enforce feasible solutions: we use this technique since it is effective and
simpler than the search for feasible solutions presented in [4].

Fig. 3 investigates the commonality among the active path sets found by the
Kleinrock (K) and the Bertsekas-Gallager (B-G) flow deviation algorithms.
Consider a path P that is present in both the K and the B-G path sets. Let
FP and F ′P denote the flow on path P when path set is computed using the K
and the B-G flow deviation algorithms respectively. If |FP − F ′P | < 0.05 then
the path P is said to be in strong agreement among the K and B-G path sets,
else the path P is said to be in weak agreement. Fig. 3 shows that 73% of the
paths are in strong agreement: the flows on these paths are the same to within
5% in the K and B-G solutions. 12% of the paths are in weak agreement.
Kleinrock’s algorithm finds 1,800 paths that do not occur in the B-G path
set, but these paths carry a trivial flow. Likewise 6 paths in the B-G path set
do not occur in the K path set, but these paths also carry a trivial flow. The
additional routes with minimal flow discovered by Kleinrock’s method can be
useful as back-up routes.

We conclude that, for the 100-node model, the K and B-G flow deviation al-
gorithms discover equivalent path sets once the trivial routes are discarded
from the K path set. In the remainder of this section will therefore use the
Bertsekas-Gallager algorithm as the basis for our global and mixed flow de-
viation algorithms. Note again that the optimal paths sets are usually not
unique: this matter is discussed in Appendix A.

4.3 The Effect of the Penalty Function

We next investigate whether the global flow deviation algorithm using the
penalty function (5) succeeds in computing a flow distribution which maxi-
mizes the minimum slacks of the network links. The calculation of a set of

17

73%

strong agreement
9009

12%

weak agreement
1487

15%

only in K
1800

0.0%
only in B-G

6

1

94%

strong agreement
238394

5% weak agreement
12999

1

Fig. 3. Commonality among the (a) paths and (b) path flows computed by the
Kleinrock and the Bertsekas-Gallager flow deviation algorithms

link flows which maximizes the minimum slacks was formulated as a linear
programming (LP) problem and the optimal routes and route flows were ex-
tracted from the optimal link flows [12].

Fig. 4 investigates the commonality among the active path sets found by the
flow deviation (FD) and the LP methods. 51% of the paths are in strong
agreement: the flows on these paths are the same to within 5% in the FD and
LP solutions. 18% of the paths are in weak agreement. 25% of the FD paths
do not occur in the LP path set, but these paths carry only 7% of the flow
in the FD model. 6% of the LP paths do not occur in the FD path set, but
these paths carry only 4% of the flow in the LP model. 89 % of the flow is
distributed among paths that are present in both the LP and the FD path
sets, and 80% of the flow is carried on paths that are in strong agreement.

Fig. 5(a) compares the link utilization distributions computed by the LP and
FD methods. The two distributions are in good agreement though the LP
method yields a few more under- and over-utilized links.

From our comparison of the LP and FD link and path flows we conclude that
for the 100-node model and for the parameter values being used, the LP and
FD path sets are largely equivalent: the flow deviation algorithm using the
penalty function (5) has succeeded in computing a flow distribution which
maximizes the minimum slacks of the network links.

18

51%

strong agreement
6709

18%

weak agreement
2393

25%

only in FD
3330

6.1% only in LP
809

1

79%

strong agreement
212437

10%

weak agreement
26463

7%

only in FD
18399

3.8% only in LP set
10221

1

Fig. 4. Commonality among the (a) paths and (b) path flows computed by the FD
and LP methods

0

10

20

30

40

50

60

70

80

90

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
P

S
frag

rep
lacem

en
ts

FD vs LP
FD
LP

link utilization ρ

nu
m

be
r

of
lin

ks

0.4 0.5 0.60.1 0.2 0.3 1.00.7 0.8 0.9

30

40

50

0

10

20

90

60

70

80

PSfrag replacements

global vs mixed

link utilization ρ

global
mixed

Fig. 5. Distribution of the link utilization ρ computed by (a) the global FD and the
LP methods (b) the global and the mixed FD methods

4.4 The Global versus Mixed Flow Deviation Methods

We next compare the qualities of the active path sets as computed by the
global and the mixed flow deviation methods. The global method requires
some 20 seconds of CPU time on a Pentium III 700 MHz processor to solve
the LSP design problem for the 100-node model; the mixed method requires
some 10 seconds. Fig. 5(b) shows that the global and mixed methods yield
nearly the same link utilization distributions.

In the remainder of this section, the length of a path denotes the hop count
of a path. The normalized length of a path is the length of that path minus
the length of the shortest path connecting the S-D pair of that path.

19

path S-D S-D flow % flow/ flow/
multiplicity pairs routes route S-D
global method

1 9307 9307 237690 95.0 25.5 25.5
2 584 1168 12193 4.8 10.4 20.8
3 9 27 103 0.0 3.8 11.5

mixed method
1 9141 9141 236466 94.5 25.8 25.8
2 738 1476 13457 5.3 9.1 18.2
3 20 60 220 0.0 3.6 11.0
4 1 4 8 0.0 2.0 8.3

Table 1
Path multiplicity

The global method finds an optimal LSP set containing 10,502 routes. The
average normalized route length is 0.39 and the average LSP bandwidth is
23.8. The mixed method finds an optimal LSP set containing 10,681 routes.
The average normalized route length is 0.38 and the average LSP bandwidth is
23.4. The LSP sets have several attractive features. The LSPs overwhelmingly
coincide with the shortest routes connecting the S-D pairs. Most S-D pairs are
connected by one or two LSPs. Some 95% of the flow is assigned to the shortest
LSPs.

Tab. 1 shows the flow assigned to n-path connections where n = 1, 2, 3, 4 (a
S-D pair is said to have an n-path connection or a path multiplicity of n if the
pair is connected by n LSPs.) For example the second row of Tab. 1 shows
that 584 S-D pairs are connected by two routes: the 1,168 routes carry 12,193
units of flow which is 4.8% of the total flow carried by the network. Each of
these routes carries on average 10.4 units of flow. Each two-path connection
carries on average 20.8 units of flow. The global method yields an average path
multiplicity of 1.06. The mixed method yields an average path multiplicity of
1.08.

Fig. 6 investigates the commonality among the active path sets found by
the global and the mixed flow deviation methods. Fig. 6 shows that 84% of
the paths are in strong agreement: the flows on these paths are the same
to within 5% in the global and the mixed solutions. 9% of the paths are in
weak agreement. 3% of the global paths do not occur in the mixed path set,
but these paths carry a trivial flow. 4% of the mixed paths do not occur in
the global path set, but these paths carry a trivial flow. 99 % of the flow is
distributed among paths that are present in both the global and the mixed
path sets, and 95% of the flow is carried on paths that are in strong agreement.

Tab. 1, Fig. 5(b) and Fig. 6 confirm that the LSP sets computed by the
global and mixed flow deviation methods are nearly equivalent. Given the
good agreement between the solutions for the 100-node model as computed by

20

84%

strong agreement
9257

9%

weak agreement
938

3%

only in global
307

4.4% only in mixed
486

1

95%

strong agreement
239876

4% weak agreement
11377

1

Fig. 6. Commonality among the (a) paths and (b) flows computed by the global
and the mixed flow deviation methods

the global and mixed methods, the results presented in the rest of this section
are computed by the global method since this method, though less efficient
than the mixed method, computes optimal as opposed to near-optimal path
sets.

4.5 Back-up Paths

The fault-tolerance capability of a routing scheme increases with the number
of paths available for re-routing and with the quality of these paths. Consider
an S-D pair connected by several paths. These paths are said to be pair-wise
link disjoint if they have no links in common. Link disjoint paths afford better
fault-tolerance since they do not share a common point of failure.

The flow deviation algorithm computes an active path set for the 100-node
model consisting of 10,502 routes carrying 249,987 units of flow. The algorithm
identified 8,609 routes to which flow was not assigned: these routes are desig-
nated as back-up paths. These paths provide back-up for 50% of the S-D pairs
which offer 33% of the traffic to the network. 12% of the back-up paths are
pair-wise link disjoint.

A back-up path should be provided for each S-D pair. In [9] we describe the
K shortest path (KSP) method for computing a set of link-disjoint paths
connecting each S-D pair. A setQ of back-up paths that covers all the S-D pairs
is found by taking the union of the set Pback−up of back-up paths discovered
by the flow deviation algorithm and the set PKSP of KSP paths with the set
Pactive of active paths removed. Thus

21

0

2000

4000

6000

8000

10000

0 5 10 15 20 25 30

pa
th

s

normalized length

active
back-up

0

50

100

150

200

250

0 200 400 600 800 1000 1200 1400

fl
ow

failed routes

Fig. 7. (a) Normalized lengths of active and back-up paths (b) flows on failed routes

Q = Pback−up ∪ (PKSP \ Pactive).

The combined path sets yield a total of |Q| = 18, 349 back-up paths.

Fig. 7(a) presents the distributions of the normalized lengths of the active
paths and the back-up paths. Most of the active paths are of normalized
length 0 and are thus the shortest paths between their respective S-D pairs.
This implies that the active paths make efficient use of the link bandwidth.
Although many of the back-up paths have a normalized length 0, some of the
back-up paths have a large normalized length and do not make efficient use
of the link bandwidth.

The most active link – though not the most heavily utilized link – in the 100-
node network carries 1,393 routes (13% of the network routes) and 21,228 units
of flow (8% of the network flow). The failure of this link is modelled by setting
the cost of this link to a very large positive number. Fig. 7(b) presents the dis-
tribution of the flow on the failed routes. The flow deviation algorithm is then
executed with the back-up path set Q as input. The flow deviation algorithm
can assign flow to the back-up paths. However, the algorithm may determine
that some back-up paths are not optimal and in this case the algorithm will
find and use new paths.

Fig. 8 compares the performance of the path sets before and after the link
failed. Fig. 8(a) shows that 61% of the routes that were present before the
link failed remain in use after the link failed. 2,361 routes were dropped: the
dropped routes include the 1,393 failed routes that passed through the failed
link as well as other (discarded) routes that are no longer used once the flow
was optimally diverted to avoid the failed link. 2,722 new routes were used to
carry the diverted flow: 1,296 of these routes are back-up routes and 1,453 are

22

56%

unchanged routes
7352

6%

changed routes
725

18%

dropped routes
2361

20.7%

new routes
2722

1

73%

unchanged flows
207710

4%

changed
12636

11%

dropped flows
31567

11.4%

new flows
32296

1

Fig. 8. Commonality among the (a) paths and (b) flows after a heavily utilized link
has failed and the back-up paths are deployed

new routes. Many of the back-up routes were therefore not used.

Fig. 8(b) shows that 73% of the route flows are in strong agreement before and
after the link failed: the flows on these routes are, to within 5%, undisturbed
by the link failure. 4% of the routes are in weak agreement: their flows have
changed by more than 5%. 31,567 units of flow were moved from the dropped
routes: 21,228 units of flow were moved from the failed routes and 10,339 from
the discarded routes. 32,296 units of flow were moved to back-up paths and
to newly discovered paths. Of this amount, 17,400 units of flow were assigned
to the back-up routes and 14,896 units of flow were assigned to new routes.

5 Conclusion

This paper considers the problem of optimal path selection in MPLS networks.
The problem is formulated as the minimization of a non-linear objective func-
tion which under light load simplifies to OSPF routing with link metrics equal
to the link propagation delays, and under heavy load minimizes the proba-
bility that a transmission link has an instantaneous offered load larger than
its bandwidth. We present an efficient algorithm based on the flow deviation
method to find the optimal paths and to assign optimal bandwidths to these
paths. The algorithm also discovers a set of back-up paths for carrying the
traffic of failed or congested paths. The algorithm is applied to compute opti-
mal LSPs for a 100-node network carrying a single traffic class. We show that
the flow deviation algorithm, using the given objective function, computes a
flow distribution that is consistent with the goal of maximizing the minimum
slacks on the network links. We investigate several variants of the flow devi-

23

1

2

3

4

5

6

Fig. A.1. The “Fish” network

ation algorithm and show that they compute near identical flows. Finally we
investigate the utility of the back-up paths. A heavily utilized link carrying
some 1,400 routes fails: the back-up paths are activated and we compare the
performance of the path sets before and after the back-up paths are deployed.

A Path Sets and Route Degeneracy

The optimal solution B computed by the flow deviation algorithm is not
unique. For example consider the network [1] presented in Fig. A.1 where traf-
fic is offered from nodes 1 and 2 to node 6: the traffic demands are d(1,6) = 0.5
and d(2,6) = 1.5. All links have capacity bi = 2 and have the same propagation
delay and the same weight factor. The optimal link flows are

f(1,3) = 0.5 f(2,3) = 1.5
f(3,4) = 1.0 f(3,5) = 1.0
f(4,6) = 1.0 f(5,6) = 1.0

Let fP denote the flow on path P . We can assign any flow z where 0 ≤ x ≤ 0.5
to path (1, 3, 4, 6) whereupon the flows assigned to other routes are

f(1,3,4,6) = z f(1,3,5,6) = 0.5− z
f(2,3,4,6) = 1.0− z f(2,3,5,6) = 0.5 + z.

It is probably an advantage for a S-D pair to have two paths rather than
one path. Having four paths rather than three is probably a disadvantage.
Operational requirements may prefer a particular value of z. Thus z = 0 and
z = 0.5 will reduce the number of paths from four to three. The flow deviation
algorithm yields z = 0.25 which assigns two paths from each of nodes 1 and 2
to node 6 with equal bandwidth. From the point of view of robustness under
traffic forecast error, this may be the preferred solution.

Given the link flows, we need methods to compute not only a set of paths and

24

a set of path flows consistent with the link flows, but we also need criteria
to determine which set of paths and path flows are superior, and we need
mechanisms to find optimal (according to those criteria) path sets and path
flows.

References

[1] Consult http://www.ietf.org for MPLS RFC and Draft Documents such as
RFC 3031 (MPLS Architecture), RFC 3036 (LDP Specifications), RFC 2702
(Requirements for Traffic Engineering over MPLS).

[2] D. Bertsekas and R. Gallager, Data Networks Second Edition, Prentice-Hall
International Inc., 1992.

[3] A. Kershenbaum, Telecommunication Design Algorithms, McGraw-Hill, 1993.

[4] L. Kleinrock, Queueing System Vol. 2: Computer Applications, John Wiley &
Sons, New York, 1976.

[5] S. Floyd and V. Jacobson, Random early detection gateways for congestion
avoidance, IEEE/ACM Transactions on Networking, 1993.

[6] T.J. Ott, T.V. Lakshman and L.H. Wong, SRED: Stabilized RED,
Proceedings of IEEE INFOCOM’99, pp. 1346 – 1355, 1999.

[7] Traffic Engineering and QoS Methods for IP-, ATM- and TDM-Based
Multiservice Networks, draft-ietf-tewg-qos-routing-04.txt. Obtainable from
http://www.ietf.org/internet-drafts/draft-ietf-tewg-qos-routing-04.txt

[8] C. Villamizar, http://brookfield.ans.net/omp/random-test-cases.html.

[9] A.B. Bagula and A.E. Krzesinski. Traffic Engineering label Switched Paths in
IP Networks using a Pre-planned Flow Optimization Model. Proceedings 9th
International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS’2001) (August 2001) Cincinnati,
USA, pp 70–77.

[10] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical
Recipes in C Second Edition, Cambridge University Press, 1992.

[11] R. Bhandari, Survivable Networks: Algorithms for Diverse Routing, Kluwer
Academic Publishers.

[12] T. Carpenter, K.R. Krishnan and D. Shallcross. Enhancements to Traffic
Engineering for Multi Protocol Label Switching. Proceedings ITC17 (Sept
2001) Salvador, Brazil.

25

