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1. Introduction

Multi Protocol Label Switching (MPLS) [1] is a flexible routing mechanism for traffic flows that is based on the assignment of flows to complete end-to-end paths within an Autonomous Domain. The flexibility comes from the freedom to choose the criterion by which traffic flows will be recognized and treated as distinctive flows. In particular, such freedom allows for the traffic of a given source-destination pair to be divided between parallel routes in order to avoid congesting links in the network. Such “traffic engineering” in the Internet is one of the primary applications envisioned for MPLS [1,2]. The goal of traffic engineering is to optimize the utilization of network resources, and thus, the performance of operational networks, by moving traffic efficiently and reliably through the network and mitigating network congestion. This capability is difficult to achieve in the current Internet because virtually all of IP routing is destination-based; i.e., the information used to decide where to forward a packet is based solely on the destination address field contained within the IP packet itself.  Thus, each router examines the destination address of each packet and decides, on a hop-by-hop (or per-router) basis, where the packet is sent next.  Moreover, the distributed algorithms found in IGPs (Interior Gateway Protocols), such as RIP (Routing Information Protocol) and OSPF (Open Shortest Path First), use primarily static metrics, such as hop count or administrative weight, for calculating which paths to send the traffic on.  This has the effect of over-burdening certain paths in the network, while under-utilizing other paths.  

One could, however, consider other fields in the IP header besides the destination address (e.g., type of service, source address), and use other metrics [3,4] and approaches [5] in determining the paths on which traffic should be sent. In fact, in MPLS, any field in an IP header can be used individually or in combination to decide how a packet is forwarded. Consequently, MPLS is not subject to the traditional, strictly destination-based IP paradigm. In addition, MPLS supports explicit routing, which is a key feature for providing traffic engineering capability. Explicit routes are routes that are fully-specified from end to end, and which might differ from the routes chosen by network layer routing protocols. The MPLS mechanism is equally suitable for assigning flows to paths according to Quality-of-Service requirements, and is thus a potential means of offering differentiated service levels [6,7].

A feasible solution to the MPLS problem, for a given network with a given set of traffic demands, will consist of a set of paths for all the traffic flows (Label Switched Paths) and the allocation of flows to these paths, such that no capacity constraints are violated. When a feasible solution exists, one can consider ‘optimizing’ such a solution for various notions of optimality. Thus, the mathematical formalism for the MPLS problem is that of multi-commodity flow allocation in a network.

In this paper, we consider both Linear Programming (LP) and Non-Linear Programming (NLP) approaches to the MPLS flow allocation problem. In particular, we propose four LP formulations, including two cases in which certain aggregations of the point-to-point traffic demands are shown to result in a drastic reduction in the size of the problem to be solved. The NLP formulation leads to a problem that can be solved either by means of centralized or distributed computation. Exploiting the fact that the NLP lends itself to distributed computation, we then propose a method of making use of both the LP and the NLP algorithms to solve the problem, taking advantage of their respective strengths. In this combined method, we rely on LP computations to select a suitable set of paths for traffic flows, and then use the NLP to determine the actual flow allocations to these paths. In practice, this approach would separate the computations into two levels, at two different time-scales: infrequent execution of time-consuming off-line calculations for path selection combined with continual rapid adjustments to flow allocations. We present the results obtained with our methods for several networks that have been studied in the literature in connection with Curtis Villamizar's method of Optimum Multi Paths (OMP) [5].

The NLP algorithm used in this paper is a version of the algorithm described by Gallager [8] for routing in data networks. Gallager showed that the algorithm was capable of either centralized or distributed implementation. The MPLS traffic engineering scheme known as MATE [9] essentially uses the distributed version of Gallager’s scheme, based on the exchange, between neighboring nodes, of information derived from traffic measurements. Thus, the distributed implementation of the NLP algorithm proposed in this paper is equivalent to the algorithm in MATE. However, our work goes beyond MATE in an important respect. MATE begins with the assumption that the LSPs to be considered have been already specified. It does not deal with the selection of LSPs, but only with the allocation of flows to them. We, however, have proposed in this paper an interesting method of combining the strengths of the LP and the NLP algorithms, using an LP to determine a set of LSPs over which the NLP (centralized or distributed) determines the flow allocations. Thus, while MATE offers only the allocation part of the solution to the MPLS problem, we present here a complete solution.

In Section 2, we formulate the MPLS problem as a multi-commodity flow allocation problem, and explore various criteria of optimization that might be reasonable candidates for consideration. The various LP formulations are presented in Section 3, and the NLP formulation is discussed in Section 4. The method of combined use of the LP and the NLP algorithms is presented in Section 5. Numerical results obtained with our methods are compared with previous results in Section 6, and the conclusions are summarized in Section 7.

2. Formulation of the  MPLS Flow Allocation Problem

This section gives a formal definition of the flow-allocation problem for MPLS, and describes several notions of ‘optimality’ that might be applicable to the solution.

2.1. Notation and Problem Statement

We have a network consisting of 
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 nodes (say routers). A pair of routers 
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In this note we make the simplifying assumption that a pair 
[image: image14.wmf])

,

(

n

m

has at most one link. In more complicated situations it is possible to have more than one link from node 
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The traffic demands are given by the matrix 
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is the amount of traffic (in bytes per second) that enters the network at node 
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are constant in time (alternatively, we can think of the demand matrix as specifying the average traffic rate), although the algorithms presented here could be extended to deal with the practical situation in which the routing must adapt to fluctuations of the traffic.

The assumption that a link 
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 means that we essentially assume that all links are point-to-point connections (no shared media such as Ethernet), or, at least that the bottlenecks are always in point-to-point connections. This seems a plausible assumption.
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denote the flow of the traffic of node-pair 
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; since traffic that reaches its destination does not re-enter the network, we have 
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. The flows, of course, are determined by the paths selected for the traffic and by the allocation of traffic to the paths, i.e., by the traffic routing. 

We then have
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(2.1)

On each link, we have the feasibility-constraint


[image: image34.wmf])

,

(

)

,

(

0

n

m

n

m

b

X

£

£





(2.2)

In addition, we express the requirement that the traffic 
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2.2. Optimization  Criteria

The general objective, of course, is more or less to minimize all the linkloads 
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Definition: A routing scheme is non-dominated if it results in link loads 
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2.2.1. 
A Linear Criterion in Link Flows
A non-dominated solution will be obtained if we seek to minimize a criterion of the form 
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(2.5),

subject to the constraints (2.1-2.3), where 
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are weights chosen for the link flows.

For some purposes, it is more convenient to work with the slacks 
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(2.6).

Then, we seek to maximize the criterion
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In the special case where all the weights are equal, i.e., 
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, we are minimizing the sum of propagation delays, which was the intention of the original form of OSPF (Open Shortest Path First) routing. In general, we can think of the weights 
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2.2.2.
Taking Account of Traffic Fluctuations: A Maxmin Criterion
Since traffic is almost never deterministic, if the plan is to achieve a ‘nominal’ flow 
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are the more critical ones and should be given greater weight. One way of formalizing this is to use the maxmin objective function:
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In other words, the objective is to maximize
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where the minimum is taken over all 
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The exact choice of 
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 and thus maximizes the normalized link “slack” (or minimizes the maximum link utilization) in the network. When there is a feasible solution to the routing problem, it could be argued that the choice 
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While the maxmin criterion has the advantage of giving greater weight to links with small slacks, it has the disadvantage that an optimum solution according to that criterion is not necessarily non-dominated. The criterion only ‘cares’ about links that have the ‘bottleneck’ value of 
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2.2.3.
 A Combined Parametric Criterion
We consider the following objective, parametrized by 
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subject to the same constraints as before. In particular, the constraint involving 
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where 
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is the maximum value attained by (2.9).

2.2.4. 
Separable Additive Convex Non-Linear Criterion
We can consider the use of a criterion  that has a non-linear dependence on link flows in order to keep the slacks
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For example, the function 
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which represents the expected delay in an M/M/1 system with an arrival rate of 
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We now consider minimizing an objective of the form
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which, at light loads, has the effect of minimizing a weighted hop-count, while, at heavy loads, is essentially equivalent to maximizing the minimum slack. Thus, the criterion manages to reflect the transition to different desired effects at different load regimes. Of course, the solution of the routing problem with a non-linear objective function calls for the use of non-linear programming algorithms.

3. Linear Program  (LP) Solutions for MPLS Routing

In this section, we investigate linear programs for the MPLS routing problem, working with those criteria  in Section 2.2 that are amenable to solution by LP. We begin with the simplest and most straightforward formulation in which the traffic 
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is treated as a separate ‘commodity’, and then present other versions which work with aggregations of the individual node-pair traffic demands, and thus lead to LPs with fewer variables.  These different formulations of the standard multicommodity network flow problem are discussed in the text by Ahuja, Magnanti and Orlin [10] and the references contained therein.

3.1. Pair-Based Flow Formulation

This is, in fact, the formulation already introduced in Section 2.1, which we re-state here for convenience with the parametric criterion given in (2.10), making use of (2.1)
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The ‘pair-wise’ formulation of (3.1) has 
[image: image94.wmf]]

1

)

1

(

[

+

-

L

N

N

 variables (assuming that there is a traffic demand for every node-pair), 
[image: image95.wmf]L

 inequality constraints, and 
[image: image96.wmf])

1

(

2

-

N

N

 equality constraints.  Note that for each pair (i,j), the equality constraints sum to zero, after bringing all terms to the same side of the equation, so one constraint is redundant.  Only 
[image: image97.wmf]2

)

1

(

-

N

N

 of the equality constraints are linearly independent.
3.2. Egress-centric Flow Formulation

Instead of treating the traffic of each node-pair as a commodity, we now define the total traffic exiting the network  at each node (from all originating nodes) as a commodity. Thus, we define
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We also define 
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and we have the LP for the egress-centric formulation: 
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The egress-centric LP has 
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3.3. Ingress-centric Flow Formulation 

This case is entirely analogous to the egress-centric case, with total traffic entering the network  at each node (for all destination nodes) now being defined as a commodity. Thus, we define
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We also define 
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and we have the LP for the ingress-centric formulation:
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(3.5)

Just as in the egress-centric case, the ingress-centric LP also has 
[image: image114.wmf])

1

(

+

NL

 variables, 
[image: image115.wmf]2

N

equality constraints (of which 
[image: image116.wmf])

1

(

-

N

N

 are linearly independent), and 
[image: image117.wmf]L

 inequality constraints.

3.4. Path-Based Flow Formulation
When the commodities in a multicommodity flow problem are origin-destination pairs and the cost associated with each link is non-negative, we can consider another formulation in which the variables correspond to paths between node pairs. In this approach, we return to the pair-based definition of commodity, but assume that an explicit set of admissible paths has been provided for the traffic between each node-pair. If the admissible set of paths includes all of the possible paths, then the solution to the resulting linear program will be optimal.  In most cases, the linear program that would result from considering all possible paths would be prohibitively large.  Thus, we now describe a well-known column generation procedure that iteratively solves a “master” linear program using a small set of admissible paths and then solves shortest path sub-problems to generate new paths, as they are needed.  In this iterative manner, we arrive at an optimum set of paths and the corresponding optimum assignment of flows to those paths.  A description of the basic column generation approach is provided in Ahuja, Magnanti, and Orlin [10]. 

Let P denote the set of paths that are currently included in the master problem; let 
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    (3.6),

which is the sum of the cost of the links composing the path.  Define variable 
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 to be the flow (or bandwidth) allocated to path 
[image: image123.wmf]P

p

Î

.  We can now state the master problem for the path-based multicommodity flow problem as:
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When (3.7) does not include all of the possible paths between pairs of nodes, we need to be able to determine when the solution obtained by the simplex method is optimal.  The column generation method allows us to implicitly “price out” paths not included in the formulation, in order to identify a path, if one exists, that reduces the value of the objective.  

Solving a linear program by the simplex method provides not only the solution for the problem at hand but also the solution for a related problem called its “dual”.  The dual solution provides a “certificate of optimality” for the associated primal solution.  During the optimization, dual variables allow us to determine the incremental effect of increasing path flows that are currently at zero.  For our purposes, the flow on any path not explicitly included in (3.7) is set to zero, and thus, should be a candidate for raising from zero. 

We now consider the dual of linear program (3.7).  Let 
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 be the dual variable associated with the constraint for demand (i,j), and let 
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 be the dual variable associated with the capacity constraint for link (m,n).  The dual linear program can be stated as:
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  (3.8)

Given a primal solution and its associated dual, we wish to determine whether the current solution is optimal for the full problem or whether we need to expand the set of paths and find a new solution.  We need to expand the set of paths whenever there is some path that is not included but could reduce the objective value.  To do this we can implicitly “price out” the paths that are not included in the current set P.   The “reduced cost” for any path that is currently at zero is given by:
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If the reduced cost for some path is negative, then the objective value is reduced by sending flow on this path and reducing flow on another.  To identify whether the current solution is optimal, we solve a shortest path problem for each commodity to find the path that satisfies:
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Any path for which this value is less than 
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 has a negative reduced cost, so the objective can be reduced by including this path.  Otherwise, we have implicitly searched all paths not already included in (3.7) and determined that none can help to improve the solution.  When the latter condition occurs, we can declare the current solution optimal.  When the former condition occurs, we add the paths whose reduced cost is negative to P and resolve the master problem.

The number of variables represented in (3.7) is 
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 Assuming that Z is nonzero in any optimal solution, the simplex method for linear programming [11] provides a solution in which at most 
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of the path variables have nonzero flow.  All remaining path variables have zero flow, so they can be removed from the formulation without affecting the current solution.  This allows us to prune the set of paths so that the master problem does not grow too large during the column generation procedure.  Possible advantages of the path-based method are: 1) that the LPs are smaller than those for the link-flow formulations presented previously; and 2) that the solution provides path flows directly.  The main disadvantage is that the method is iterative and may require resolving the master problem a large number of times.
3.5. Determining Paths from LP Solutions
From each of the above LP formulations, we may determine a set of paths and an assignment of demands to these paths.  The path-based flow formulation gives this set of paths and assignment of demands directly.  For the pair-based flow formulation, and the two aggregated (rooted) flow formulations, we determine the paths and assign demands by what is basically the same algorithm.  We will give details for the egress-centric flow formulation, with directions on how to adapt this for the ingress-centric and the pair-based flow formulations.

For the egress-centric flow formulation, for each demand destination j, we have a flow using the variables x(m,n),j for the various links (m,n), where the supply at each node i is d(i,j). We want to decompose this flow into a sum of flows on paths terminating at j.  Consider the restricted graph 
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 of links (m,n) so that x(m,n),j is positive.  If x is a non-dominated solution, for example, if it is an optimal solution for an objective with coefficients w all positive, 
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 will have no directed cycles.   In this case, initialize G’ to be 
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.  Repeat the following steps until G’ has no remaining links and x(m,n),j is zero everywhere.  Find a node i with outgoing links but no incoming links in G’.  Find an i(j path P in G’.  Different path-finding methods may affect, for example, how much the paths for a single destination vary in length, but it suffices to perform a directed random walk in G’, starting at i.  Let lP be the minimum of x(m,n),j over all links (m,n) in P.  Assign a flow of lP to P, and subtract lP from x(m,n),j for all (m,n) in P.  At least one link has had its flow reduced to zero for this demand pair, so remove all such links from G’.  We preserve the conditions that G’ has no directed cycles, that the sum of the net supply with respect to x(.,.),j plus the flow assigned to paths from i equals the demand d(i,j), and that the only net sink is at j.  Thus, we can proceed until G’ has no links, and all of the demand is assigned to the identified paths.  Each path found corresponds to at least one positive component of x. As stated above, the LP has N(N-1) + L linearly independent constraints, so if x and Z make a basic solution to the LP (as produced by the simplex method), and Z is positive, x will have at most N(N-1) + L - 1 positive components.  Thus we have at most N(N-1) + L - 1 paths. This is the same bound as in the path-based flow formulation.

If 
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 has directed cycles, we can sequentially find these cycles and reduce x on them until there are no more such cycles, giving a new solution x’ to the LP, at least as good as x, with fewer positive components.  We then run the above algorithm on x’ to produce a set of path flows with the same bound on the number of paths.

The ingress-centric flow formulation may be treated symmetrically with the egress-centric formulation, with “terminating” replaced by “originating”, 
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 by 
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, “i(j” by “j(i”, “incoming” and “outgoing” reversed, and so forth.

For the pair-based flow formulation, for each demand d(i,j), we have an i(j flow using the variables x(i,j),(m,n) for the various links (m,n).  We want to decompose this flow into a sum of flows on i(j paths.  We can apply the same algorithm, as though the only source was i.  Again, if the LP solution is not non-dominated, it will correspond to a sum of flows on paths and flows on directed cycles, and the flows on paths we find will correspond to an alternative LP solution that dominates the original solution.  Our upper bound on the number of paths is now N(N-1)2+L..

4. Non-Linear Programming Formulation and Solution

It was pointed out in Section 2.2.4 that the use of a decreasing convex function of link “slack” (or an increasing convex function of link occupancy) to represent the ‘cost’ of a link captures the effects that are important at different load regimes. The use of such a criterion turns the optimization problem into a non-linear program (NLP), which we formulate in this section. 

To solve the MPLS flow allocation problem, one needs to select a set of paths (LSPs) and to determine the corresponding flow allocations. To begin with, we assume that the set of paths has been selected, and concentrate on the problem of optimum flow-allocation. Of course, one could begin with a very large set of potential paths, and allow the algorithm to determine which of those should be used and which not. Alternatively, the flow allocations obtained for an initial choice of paths can themselves be used to determine a better set of paths as was discussed in Section 3.4. 

The NLP can be solved along the lines of a method proposed by Gallager  [8].  The method essentially consists of starting from the Kuhn-Tucker conditions of optimality for the NLP formulation of the flow allocation problem, and interpreting those conditions to yield a metric of comparison between alternative paths. 

Notation

We introduce the following additional notation:


[image: image140.wmf]k

j

i

(i,j)

k

j

i

j

i

k

j

i

j

i

j

i

j

i

P

d

K

k

i

k

P

K

K

j

i

K

),

,

(

),

,

(

)

,

(

),

,

(

)

,

(

)

,

(

)

,

(

path 

 

 to

allocated

 

 

of

fraction 

  

,

,

,

1

j)

 

,

 

(

pair  

-

node

  

of

 

path 

  

network

 

in the

 

paths

 

of

number 

 

total

 

)

,

(

pair 

-

node

for 

 

paths

 

of

number 

 

=

=

=

=

=

=

å

f

K




We then have the conditions
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(4.1)     


Equations for Link Flows

Define the structure of paths by the path-link incidence relations
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We then have the following equations, which express the link-loads 
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Performance Criterion

We assume that the network performance criterion to be minimized is given by a function
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 of the link loads 
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(4.3),

where each 
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The condition that each link load 
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For a given network, with node-pair loads 
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, and a chosen set of paths, the link loads are determined by the allocation factors 
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(4.5)

Kuhn-Tucker Conditions of Optimality

We now have the following constrained non-linear program:
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(4.6)

The Kuhn-Tucker necessary conditions of optimality for the NLP (4.6) state that there exist constants 
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(4.7)

It follows from (4.7) that
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(4.8)

The conditions (4.8) have the following interpretation:

at an optimum solution, the partial derivatives of the network performance criterion with respect to the flow allocations of a given node-pair are equal for all paths that are in use for that node-pair, and are less than or equal to the derivatives with respect to allocations of the unused paths for that node-pair.

The necessary conditions (4.8) are also sufficient for optimality [8] when 
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Calculation of Derivatives 
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(4.9)

Using (4.9) in (4.8), we obtain



[image: image171.wmf]0

  

for  which

)

,

(

each  

for  

 

 

,

,

1

,

0

   

if

   

,

 

)

(

say

  

,

)

(

)

,

(

)

,

(

),

,

(

)

,

(

),

,

(

)

,

(

)

,

(

)

,

(

)

,

(

)

,

(

),

,

(

)

,

(

)

,

(

)

,

(

)

,

(

>

=

ï

ï

þ

ï

ï

ý

ü

>

=

¢

=

-

³

¢

å

å

Î

Î

j

i

j

i

k

j

i

j

i

k

j

i

P

n

m

n

m

j

i

j

i

j

i

k

j

i

P

n

m

n

m

d

j

i

K

k

X

D

d

X

D

n

m

n

m

K

f

w

w

l

  
 (4.10)

We note that 
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representing the corresponding “link metric”.  Moreover, the path metric can be determined at the source node by distributed computation, by each node of the path transmitting a partial path metric to its upstream neighbor, the partial metric consisting of the sum of metrics of links traced backwards from the destination up to the node in question. 

Define 
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(4.11)

Then,  (4.10) has the following simple interpretation: in an optimum solution, for the traffic of each node-pair, all the paths that have flows allocated to them must have the same path-metric, and this metric must be less than or equal to the metric of paths which have no flows allocated to them.

Thus, an algorithm for arriving at the optimum flow allocation should be based on the principle of taking the flow allocations closer to attaining the conditions (4.10), by increasing the allocation to the path with the smallest metric and reducing the allocations on the other paths, keeping the sum of the allocations equal to 1.

It is important to note from (4.10-4.12) that the actual implementation of the algorithm does NOT require explicit knowledge of the point-to-point loads 
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, and could be accomplished by distributed computation among the nodes. It is based on comparisons of the metrics of alternative paths, which are determined entirely by link-loads, for the form of performance criterion assumed in (4.5). These metrics can be computed by the originating node on the basis of information collected from its ‘downstream’ neighbors.

5. Combined Use of LP and NLP Methods

There are two parts to the solution of the general problem of assigning traffic demands to paths in the network: choosing a good set of paths, and determining the right allocation of traffic to the paths. 

The pair-based LP formulation of Section 3.1 proceeds without an explicit choice of paths, describing the problem entirely in terms of link flows, and can also be described as link-based. From the link-flows assigned by the LP solution, we derive a compatible set of paths and corresponding path-allocation of flows by the method described in Section 3.5. The NLP formulation presented in Section 4, on the other hand, is based on a pre-specified set of admissible paths for the traffic of each demand, and determines the optimum allocation of flows to this set of paths. 

An argument in favor of the NLP is that the nonlinear ‘cost-function’ proposed for a link (as a function of its load) manages to capture the different effects that are important at different load regimes. We therefore considered the idea of using the set of paths derived from the solution of the link-based LP as the input paths to the path-based NLP. Thus, we use the LP to determine the paths and the NLP to determine the allocation of flows to those paths. As we see later, this combination of the two methods seems to produce a solution that has excellent characteristics.

There are additional arguments in favor of this approach of combining the LP and the NLP methods. The LP formulation requires complete knowledge of the point-to-point  demand matrix, and is thus suitable for centralized off-line computation. The NLP algorithm, however, is capable of being implemented by means of distributed computations among the network nodes, by exchange of local information [8], without explicit knowledge of the point-to-point demand matrix, as was pointed out in Section 4. For this reason, the NLP can accommodate uncertainties in loads and adapt itself to ‘slow’ load variations (slower than the rate of convergence of the algorithm). We can thus consider a scheme in which the traffic paths (MPLS LSPs)  themselves are determined at  infrequent intervals,  by means of off-line centralized LP computations on the basis of the most recent estimates of the point-to-point demand matrix, while the NLP is being continually implemented in the network in its distributed mode, adapting itself to the actual loads in the network. Thus, the time-consuming path calculations are done off-line and at intervals over which significant changes occur in the loads or link-capacities, while the flow-allocations are under continual adaptation through distributed actions at the nodes.

6. Numerical Results

We report results for two networks provided on a web-site (http://brookfield.ans.net/omp/random-test-cases.html) maintained by Curtis Villamizar for testing and evaluating MPLS-OMP. The smaller of the two networks has 10 nodes and 58 links, while the larger has 50 nodes and 202 links.  The test cases provide the capacity for each link and the demand between each pair of nodes.  We found that the capacities provided in the test data set are not the same as those implied by the solution that Villamizar provides.  Thus, for the 10-node case, we have based our tests on the capacities implied by his solution in order that we may compare our results to those of MPLS-OMP.  For the larger network, we use the test network as given and provide results for only our own methods.  We note that our results are still quite preliminary, but they illustrate the general efficacy of the proposed methods. 

In the trials performed, we observe both the solution time and the character of the resulting solution. The character of the solutions for the 10-node network is summarized by the link utilizations displayed in Figure 1.  The illustrated results are obtained by four different methods: 

1) the linear programming solution of the egress-centric formulation (LP); 

2) the NLP solution obtained using paths extracted from the LP solution (LP-NLP);

3) the MPLS-OMP solution provided by the aforementioned web-site (MPLS-OMP); and 

4) the NLP solution obtained using the paths provided by the MPLS-OMP web-site (OMP-NLP). 

We consider the LP formulation that employs the combined objective described in Section 2.2.3.  We set the objective parameters to assure that we obtain a non-dominated solution that also optimizes the maxmin criterion. 

We solve the LP using CPLEX 3.0, which is a commercially available LP solver.  CPLEX itself includes the choice of two LP solvers.  The first employs the simplex method [11], while the second employs the more recent barrier method [12].  The barrier method often performs well in 

solving large, sparse linear programs like those for our multi-commodity flow problems.  In the context of our test problems, the barrier method is considerably faster than the simplex method on the 50-node problem but slower on the 10-node example.  A feature of the simplex method, which we lose with the barrier method, is the bound on the number of nonzero flows assured by a basic solution. (This is described in Section 3.5.)  The barrier solution may have many more than the necessary number of nonzero flows.  However, CPLEX includes a “crossover” procedure [13] to obtain a basic solution from a barrier solution.  To obtain our results, we apply the barrier method followed by the crossover procedure to obtain a basic solution to the LP.  Then (for the LP-NLP case) we extract paths from the LP link flows and apply the NLP to distribute flow to the selected paths.
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Figure 1: Distribution of link utilizations for various routing methods.

For the 10-node example, all of the computations required to solve the LP, extract paths from the LP solution and then apply the NLP to distribute flow to the paths are completed in under a second on a Sun S670.  

The maximum link utilization is approximately 54.6% for the 10-node test case.  Thus, the linear programming method provides a solution in which no more than 54.6% of the bandwidth on any link is utilized.  Figure 1 shows that the other methods require a larger percentage of available bandwidth on the most congested links in the network.  However, the NLP method seems to dampen the peaks in the distribution of link loads, thus yielding a slightly lower average utilization. The two tests of the NLP method indicate that its results are very sensitive to the paths provided as input. In this case, the paths extracted from the LP solution seem to yield a better solution from the NLP because there are far fewer congested links.  
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For the 50-node problem, we limit our testing to the LP and the NLP using paths extracted from the LP solution.  The maximum link utilization determined by the LP is 55.2%.  The distribution of link utilizations is shown in Figure 2.  The link load distribution for the LP and NLP cases is quite similar. Here, the NLP distributes flow with a maximum link utilization of 59.3% (or slightly higher than the LP value) but, of course, performs better with respect to the non-linear delay criterion.  

Figure 2: Distribution of link loads for the 50-node network.

The LP formulation that results from the 50-node case is rather large, having 2702 constraints and 10101 variables.  The LP solution is obtained and paths are extracted in 123.9 seconds. Flow distribution with the NLP requires an additional 11 seconds.  On this example path selection requires approximately two minutes, but flow allocation (or re-allocation) is considerably faster. Thus, given a good set of paths the NLP obtains a solution very quickly. This suggests that the NLP method may perform well in a dynamic environment, provided the input set of paths remains viable.  

Finally, a word on the number and “quality” of paths we obtain. In both test problems, there is demand between each pair of nodes. Thus, we require at least 90 unique paths in the small network and at least 2450 paths in the larger network to guarantee that there is at least one path for each demand. 

In the 10-node example, 117 paths are extracted from the LP solution.  A total of 66 demands have a single associated path; 21 demands have two paths; and 3 demands have 3 paths.  Of these paths, 111 are “min-hop” paths, while the remaining 6 require one extra hop. The NLP allocates flow to 112 of the 117 paths extracted from the LP solution.  The MPLS-OMP site provides 110 paths as input, and of these, the NLP allocates flow to only 91.  

In the 50-node example, 2577 paths are extracted from the LP solution, and the NLP allocates flow to 2469 of them.  Of the paths extracted from the LP, 2534 are min-hop paths, while the remaining 43 use one extra link.  In the subset of paths selected by the NLP, all but 5 are min-hop.  The small deviation from the optimum hop count suggests that the paths we obtain are likely to be good with respect to many practical criteria.  

In the solution extracted from the LP, 3227 demands have a single associated path; 120 demands have two paths; 2 demands have 3 paths; and 1 demand has 4 paths.  The NLP prunes the paths so that all but 19 demands have a single associated path, and those 19 demands have exactly 2 paths.  Thus it appears that, with either an LP method or the NLP method (with paths extracted from the LP solution), the vast majority of the demand is served by a single path in a well-designed network.  

7. Conclusions

Multi Protocol Label Switching (MPLS) is a flexible routing mechanism for traffic flows that can reduce congestion in the network by means of the intelligent matching of flows to capacities of paths. MPLS also has the potential to be a mechanism for realizing differentiated service-levels in the network for designated sets of traffic flows. To realize the potential benefits of MPLS, one has to find efficient solutions to problems that can be formulated as the optimization of multi-commodity flows in a capacitated network.

In this paper, we have provided solutions to the MPLS problem, by means of Linear Programming (LP) and Non-Linear Programming (NLP) methods. In particular, we have presented various versions of the LP formulation, and have proposed methods of ‘aggregation’ of input demands that drastically reduce the complexity of the problem. Also, with the LP approach, we have shown that the objective function can be manipulated to incorporate a degree of ‘robustness’ as part of the characteristics of the solution. 

Exploiting the fact that the NLP method lends itself also to distributed computation, we have also proposed a method of making use of both the LP and the NLP algorithms to solve the problem, taking advantage of their respective strengths. In this combined method, we carry out LP computations for determining a suitable set of paths for traffic flows, and then use the NLP to determine the actual flow allocations to this parsimonious set of paths. In practice, this approach would separate the computations into two levels, at two different time-scales: infrequent execution of time-consuming off-line calculations for path selection combined with continual rapid adjustments to flow allocations. 

We have used the LP formulation to obtain a solution to the MPLS problem for a network of 50 nodes in minutes, and we expect to make improvements that will permit larger networks to be solved. The NLP algorithm has been successfully tested on both 10 and 50-node examples, and is an area of active research.
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