
[5] V. Jacobson, \Congestion avoidance and control," Proc. ACM SIGCOMM '88, pp. 314-329.

[6] V. Jacobson, \Berkeley TCP evolution from 4.3-tahoe to 4.3-reno," Proc. of the 18th Internet

Engineering Task Force, Vancouver, August, 1990.

[7] V. Jacobson, R. Braden and D. Borman, \TCP extensions for high performance," RFC (request
for comment) 1323, May 1992.

[8] P. Karn and C. Partridge, \Improving Round-Trip Time Estimates in Reliable Transport
Protocols," ACM Trans. on Computer Systems, vol. 9, no. 4, pp. 364-373, November 1991.

[9] T. V. Lakshman and U. Madhow Performance analysis of window-based
ow control using
TCP/IP: the e�ect of high bandwidth-delay products and random loss. IFIP Transactions

C-26, High Performance Networking V, pp. 135-150, North-Holland, 1994.

[10] K. K. Ramakrishnan and R. Jain, \A binary feedback scheme for congestion avoidance in
computer networks with a connectionless network layer," Proc. ACM SIGCOMM '88, pp.
303-313.

[11] A. Romanow and S. Floyd, \Dynamics of TCP Tra�c over ATM Networks" Proc. ACM
Sigcomm Conference 1994, pp.79-88.

[12] S. Shenker, L. Zhang, and D. D. Clark, \Some observations on the dynamics of a congestion
control algorithm," Computer Communication Review, pp. 30-39, October 1990.

[13] N. Yin, and M. G. Hluchyj, Implication of Dropping Packets from the Front of a Queue. 7-th
ITC, Oct 1990. Copenhagen, Denmark.

[14] L. Zhang, \A new architecture for packet switching network protocols," Ph. D. dissertation,
M.I.T. Lab. Comput. Sci., Cambridge, MA, 1989.

[15] L. Zhang, S. Shenker, and D. D. Clark, \Observations on the dynamics of a congestion control
algorithm: the e�ects of two-way tra�c," Proc. ACM SIGCOMM '91, pp. 133-147.

19

protocol, in particular the fast retransmit feature, this earlier noti�cation (or reduced latency)
translates into larger throughput. In addition, we experimentally found that \Drop from Front"
policies reduce (compared with \Drop from Tail" mechanisms) the throughput advantage that TCP
sessions with shorter Round Trip Times have, and so drop from front alleviates unfairness. This
is particularly so when there are very few active sources. We also gave an explanation for this
experimentally observed phenomena.

We found that drop from front typically requires less bu�ering. For good throughput, the
simple \Pure Cell Drop from the Tail" policy needs a normalized bu�er size of � = 3 to get high
throughput. The more sophisticated \Partial Frame Drop from the Tail" requires � values of 2
and even 3 in some cases for high throughput. In comparison, \Pure Cell Drop at the Front" and
\Partial Frame Drop at the Front" allow � values close to 1 and possibly even less than one for
\Partial Frame Drop at the Front".

We also compared TCP performance under drop from front to that with RED. If these schemes
are used by themselves at the cell level and are not used in conjunction with any form of frame drop,
then drop from front results in higher performance than RED. Also, RED's performance is sensitive
to the range of probabilities used in the drop function. RED's performance is considerably better
when RED is used in conjunction with whole frame drop. Drop from front with partial frame drop
gives almost similar performance. However, this slightly lower throughput may not be su�cient to
warrant the use of RED since drop from front can be used for other tra�c classes as well since it
reduces the average latency [13]. So when using drop from front there is no explicit need for the
switch to know which virtual circuits are carrying TCP tra�c.

While our simulations were done for an ATM cell-bu�er, we expect similar di�erences between
the performances under Taildrop and Drop from Front in router based packet bu�ers. Even though
the e�ectiveness of \Drop from Front" depends on the fast retransmit feature of the TCP protocol,
the implementation of \Drop from Front" is entirely in the switch. No change to the TCP protocol
is necessary.

Acknowledgements

We thank Mark Garrett for helpful discussions about activity in the ATM Forum. We thank Dave
Sincoskie for helpful suggestions about e�cient implementations of \drop from front".

References

[1] L. S. Brakmo, S. W. O'Malley and L. L. Peterson, \ TCP Vegas: New Techniques for Conges-
tion Detection and Avoidance" Proceedings of ACM SIGCOMM '94, May 1994.

[2] S. Floyd, \Connections with Multiple Congested Gateways in Packet-Switched Networks Part
1: One-way Tra�c," Computer Communications Review, vol.21, no.5, pp. 30-47, October 1991.

[3] S. Floyd and V. Jacobson, \On Tra�c Phase E�ects in Packet-Switched Gateways," Internet-
working: Research and Experience, vol.3, no.3, pp.115-156, September 1992. (An earlier version
of this paper appeared in Computer Communication Review, vol. 21, no. 2, April 1991.)

[4] S. Floyd and V. Jacobson, \Random Early Detection gateways for congestion avoidance",
IEEE/ACM Transactions of Networking, vol. 1, no. 4, pp. 397-413, August 1993.

18

Dependence of throughput on the menu for RED

range of the RED menu: zapping probability(full queue)/zap(empty)

th
ro

ug
hp

ut

10^0 10^1 10^2 10^3 10^4 10^5 10^6 10^7 10^8 10^9 10^10

0.
89

0.
90

0.
91

0.
92

0.
93

0.
94

F
igu

re
1
4
:
R
ob
u
stn

ess
to

p
aram

eters
of

ex
p
on
en
tial

d
rop

fu
n
ction

1
7

Throughputs for n=14 rtt=60 ms

buffer size in cells (below) & in round trips (above)

th
ro

ug
hp

ut

0 5000 10000 15000 20000

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

0 1 2 3 4

RED (exponential from 0.002 to 1) by frame at front
RED (exponential from 0.002 to 1) by frame at tail
frame drop from front
frame drop from tail

F
ig
u
re

13
:
P
erform

an
ce

of
R
E
D
u
sed

at
fron

t
an
d
R
E
D
u
sed

at
tail;

ap
p
lied

to
fram

es

1
6

Throughputs for n=14 rtt=60 ms

buffer size in cells (below) & in round trips (above)

th
ro

ug
hp

ut

0 5000 10000 15000 20000

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

0 1 2 3 4

RED (exponential from 0.002 to 0.2) by frame at tail
RED (exponential from 0.002 to 1) by frame at tail
RED (exponential from 1e-10 to 1) by frame at tail
RED (exponential from 0.004 to 0.1) by frame at tail
frame drop from front
frame drop from tail

F
ig
u
re

12:
D
ro
p
from

fron
t
w
ith

p
artial

fram
e
d
rop

an
d
R
E
D
w
ith

w
h
ole

fram
e
d
rop

1
5

Throughputs for n=14 rtt=60 ms

buffer size in cells (below) & in round trips (above)

th
ro

ug
hp

ut

0 5000 10000 15000 20000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0 1 2 3 4

RED (exponential from 2.2e-05 to 1) by cell at tail
RED (exponential from 1e-12 to 1) by cell at tail
cell drop from front
cell drop from tail

F
igu

re
11
:
D
rop

fro
m

fron
t
an
d
R
E
D
;
n
o
form

of
fram

e
d
rop

1
4

5 Performance Comparison with RED

Figure 11 compares the performance of drop from front to that of RED. The version of RED used
is as explained in Section 2. The drop probabilities increase exponentially with bu�er occupancy.
The legend in the �gure indicates the extreme values of the drop probabilities corresponding to
the bu�er occupancy being equal to one cell and the bu�er being full. The �gure also shows the
performance of drop from tail for reference. All the plots in �gure 11 show results corresponding
to the pure cell drop case { i.e. there is no form of frame drop used in conjuction with any of
the schemes. The results are for the combined throughput of 14 connections with equal round
trip times (60 ms in this case). The X-axis shows the bu�er size in both cells and in multiples
of round trip delay (the service rate, as for all simulations in this paper, is the DS-3 rate). From
the �gure it can be seen that drop from front has the best performance for all bu�er sizes. The
TCP performance under RED not only is less than that of drop of front but also is sensitive to the
precise drop probabilities. Indeed, if the drop probabilities span a wide range (10�12 to 1 in the
�gure) then RED sometimes performs even worse than drop from tail.

Figure 12 again compares the performance of drop from front to that of RED except that now
both are used in conjunction with frame drop. For drop from front, the frame drop used is partial
frame drop and for RED the frame drop scheme used drops whole frames (as explained in Section
2). When RED is applied at the frame level, the performance improvement is more impressive than
when RED is applied at the cell level. Also, when applied at the frame level the throughputs are
fairly robust to the speci�c parameters of the exponential drop function as can be seen from the 4
plots for RED throughput in Figure 12. The performance is slightly better than that of even frame
dropping from the front. As can be seen from Figure 12, either RED by the frame or dropping
frames from the front gives a large improvement over dropping frames from the tail (which was
already signi�cantly better than dropping cells from the tail). Visually, the curves for RED and
for dropping from the front give nearly the same impression of dramatic improvement in using the
bottleneck resource e�ciently. However, drop from front has the advantage of not having to know
that the connection is a TCP connection since even for other sources it reduces the average latency.

RED can be used at the front of the bu�er or at the tail of the bu�er. Figure 13 shows that
this does not make much of a di�erence.

Figure 14 illustrates the robustness of RED applied at the frame level to the parameters of
the exponential function used for the drop probabilities. The X-axis is the ratio REDfull/REDone
where REDfull is the drop probability when the bu�er is full and REDone is the drop probability
when the bu�er has occupancy of one cell. So the X-axis indicates the range of probabilities. The
throughput results are for six connections with equal round trip times of 60 ms and a bottleneck
bu�er size of 2304 cells. The graph shows that range doesn't really a�ect the throughput for RED
at the frame level.

6 Conclusions

In this paper, we proposed using \Drop from Front" bu�er management policies to improve TCP
performance in high bandwidth-delay product networks. The motivation was to further exploit the
fast retransmit mechanism in TCP. We studied by simulation the value of \Drop from Front" as
a performance enhancing mechanism for TCP over ATM. \Drop from Front" gives sources earlier
noti�cation of starting congestion than \Tail Drop" mechanisms do. Through the TCP end-to-end

13

0 4000 8000 12000 16000 20000 24000
ATM Switch Output Port Buffer Size in Cells

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d
Th

ro
ug

hp
ut

Throughputs of 3 different connections
RTTs: 40 ms, 60 ms, 80 ms, Partial frame drop

Partial Frame Drop at Front
Partial Frame Drop at Tail

Figure 9: Individual throughputs, Di�erent RTTs,B = 5760 cells for � = 1

0 4000 8000 12000 16000 20000 24000
ATM Switch Output Port Buffer Size in Cells

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Throughput for 14 connections
RTTs: 60 ms

Partial Frame Drop at Front
Partial Frame Drop at Tail
Pure Drop from Front
Pure Drop from Tail

Figure 10: Total throughputs, Equal RTTs, B = 5760 cells for � = 1

12

0 4000 8000 12000 16000 20000 24000
ATM Switch Output Port Buffer Size in Cells

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Throughput for 3 connections
RTTs: 40ms, 60 ms, 80 ms

Partial Frame Drop at Front
Partial Frame Drop at Tail
Pure Drop from Front
Pure Drop from Tail

Figure 7: Total throughputs, Di�erent RTTs,B = 5760 cells for � = 1

0 4000 8000 12000 16000 20000 24000
ATM Switch Output Port Buffer Size in Cells

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d
Th

ro
ug

hp
ut

Throughputs of 3 different connections
RTTs: 40 ms, 60 ms, 80 ms, No Partial frame drop

Drop from Front
Drop from Tail

Figure 8: Individual throughputs, Di�erent RTTs,B = 5760 cells for � = 1

11

0 4000 8000 12000 16000 20000 24000
ATM Switch Output Port Buffer Size in Cells

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

No
rm

al
ize

d
Th

ro
ug

hp
ut

Throughputs of 2 different connections
RTTs: 40 ms, 80 ms, Partial frame drop

Partial Frame Drop at Front
Partial Frame Drop at Tail

Figure 5: Individual throughputs, Di�erent RTTs,B = 5760 cells for � = 1

0 4000 8000 12000 16000 20000 24000
ATM Switch Output Port Buffer Size in Cells

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Throughput for 3 connections
RTTs: 60 ms

Partial Frame Drop at Front
Partial Frame Drop at Tail
Pure Drop from Front
Pure Drop from Tail

Figure 6: Total throughputs, Equal RTTs,B = 5760 cells for � = 1

10

0 4000 8000 12000 16000 20000 24000
ATM Switch Output Port Buffer Size in Cells

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Throughput for 2 connections
RTTs: 40ms, 80 ms

Partial Frame Drop at Front
Partial Frame Drop at Tail
Pure Drop from Front
Pure Drop from Tail

Figure 3: Total throughputs, Di�erent RTTs, B = 5760 cells for � = 1

0 4000 8000 12000 16000 20000 24000
ATM Switch Output Port Buffer Size in Cells

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Th

ro
ug

hp
ut

Throughputs of 2 different connections
RTTs: 40 ms, 80 ms, No partial frame drop

Drop From Front
Drop from Tail

Figure 4: Individual throughputs, Di�erent RTTs, B = 5760 cells for � = 1

9

\Front" policies. For the explanation, consider only the case of two active sources. Under \Tail"
policies, the two sources tend to lose about the same numbers of packets. For Cell-Tail, this is true
because whenever two packets collide while the bu�er is full, both get damaged. For Frame-Tail
this is true because whenever two packets are colliding while the bu�er is full, at random one of the
two connections loses all cells from the point where the bu�er gets full. On the other hand, under
\Front" policies, the number of packets a source loses is roughly proportional to its throughput.
This alleviates the unfairness somewhat.

Before �nal conclusions can be drawn on bu�er management schemes, a wider variety of situa-
tions must be investigated. For the time being, the following conclusions are warranted:

For Pure Cell Drop at the Tail, � should be at least in the range 3 or 4 to get \decent"
throughput for a reasonable range of \number of sources - RTT combinations". For Pure Cell Drop
at the Front, a value of � = 1 is acceptable, although � = 1:25 might be better choice. Partial
Frame Drop at the Tail may need much larger values of � because of larger unfairness for � as high
as 2 or 3 if the number of active sources is small and the RTT di�erential is high (for an explanation
of why unfairness decreases somewhat with larger bu�er size, see [9]).

Partial Frame Drop at the Front comes out best, allowing values of � as low as 1 (maybe even
a bit lower) and having the least amount of unfairness to connections with larger round-trip times.

0 4000 8000 12000 16000 20000 24000
ATM Switch Output Port Buffer Size in Cells

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Throughput for 2 connections
RTTs: 60 ms

Partial Frame Drop at Front
Partial Frame Drop at Tail
Pure Drop from Front
Pure Drop from Tail

Figure 2: Total throughputs, Equal RTTs, B = 5760 cells for � = 1

8

Only transmitted cells that are not part of a damaged packet, or of a later repeated packet, count
toward throughput. The plots show normalized throughput with 1 being perfect throughput (no
unused cell slots and all cell slots utilized by good cells). All plots use output bu�er sizes of 256,
1152, 2304, 3456, 4608, 5760, 6912, 8064, 9216, 11520, 14400, 17280, 20160, and 23040 cells. At an
\external" round trip time (RTT) of 60 msec (external to the output bu�er), a bu�er size of 5760
cells corresponds to � = 1 (max delay in the bu�er equals RTT outside the bu�er), and a bu�er
size of 23040 corresponds to � = 4. The RTTs listed in the �gures are the RTTs excluding the
delay in the bu�er. As mentioned in Section 3, we used two packet sizes in the simulation: 4388
bytes for data packets and 64 bytes for acknowledgement (ACK) packets. These translate to 92
cells per data packet and 2 cells per ACK packet.

The Figures 2, 3, 6, 7, and 10 give total normalized throughput for respectively the cases of:
2 active sources, each (external) RTT 60 msec; 2 active sources, RTTs 40 and 80 msec; 3 active
sources, each RTT 60 msec; 3 active sources, RTTs 40, 60, 80 msec; 14 active active sources, each
RTT 60 msec. In all those cases each source has its own DS-3 channel into the switch and all the
competing streams use the same output port. In the cases of equal RTTs, � is well-de�ned, but in
the cases of unequal RTTs (Figures 3 and 7) � is no longer well-de�ned: The average of the RTTs
weighted by throughput is less than 60 msec, because of the bias, by TCP, in favor of sessions with
short RTTs. For all simulations, the TCP sources always have data to send and the only limiting
mechanism is the windowing mechanism.

Each of the Figures 2, 3, 6, 7, and 10 contains four plots of normalized total throughput vs
bu�er size. These correspond to the four drop disciplines studied: Pure Cell Drop at the Tail
(abbreviated as Cell-Tail); Pure Cell Drop at the Front (Cell-Front); Partial Frame Drop at the
Tail (Frame-Tail); and Partial Frame Drop at the Front (Frame-Front). We see that \Partial
Frame Drop" helps improve throughput: consistently, Frame-Front has better throughput than
Cell-Front, and consistently Frame-Tail has better throughput than Cell-Tail. In addition, with
rare exceptions, Cell-Tail is the poorest performer. The exceptions all occur for very low bu�er
sizes, where \lockout" due to phase e�ects play a role despite the randomization. (Lockout occurs
when one connection grabs all the bandwidth and virtually squeezes out all other sources). Lockout
generally leads to good throughput because it causes behavior as if there is only one source which
in our simulations is not capable of causing congestion. We also see that with rare exceptions
throughput increases when the bu�er size increases. Again, the rare exceptions occur for very
small bu�er sizes, where throughput is high due to lockout.

By and large, Frame-Front is better, often much better, than Cell-Front and also better than
Frame-Tail. Frame-Tail is better than Cell-Front for small bu�er sizes but Cell-Front becomes
better than Frame-Tail for larger bu�er sizes. This is in fact the case whenever all connections
have the same RTT (Figures 2, 6, and 10). When RTTs are unequal (Figures 3 and 7), Frame-Tail
starts doing better. This is particularly the case when the number of sources is very small (Figure
2) where for small bu�er sizes Frame-Tail even does better than Frame-Front.

The Figures 5 (2 sources) and 9 (3 sources) show that this relative improvement of Frame-Tail
for unequal RTTs is, to a large degree, due to lock out and unfairness: Under all circumstances the
connection with the shorter RTT has an advantage, and under Frame-Tail this advantage is much
larger than under Frame-Front. This e�ect is stronger for 2 sources than for 3 sources.

The Figures 4 (2 sources) and 8 (3 sources) show that a similar, but weaker, di�erence in bias
is present between Cell-Tail and Cell-Front.

Next we give an explanation for this stronger degree of lock out under \Tail" policies than under

7

to the bu�er in the simulation) cells in the end of the bu�er (this is only used to create bu�er
space, FIFO ordering is not violated). Drop from front does not su�er from phase e�ects and so
no randomization is needed.

The link propagation delays are set to vary in the range 100 �secs to 2800 �secs. The propa-
gation delay is �xed for a speci�c link but di�ers from link to link. The switch samples the switch
input ports (where the DS-3 links terminate) at a sampling rate of once every 2.8 �secs. The
internal switch timing is simulated accurately as also the architecture of a popular ATM switch.
For brevity, we do not describe in detail the internal timing and architecture of the switch used in
the simulations. For our performance studies, it is su�cient to know that there is no queueing or
blocking internal to the switch and contention occurs only at the switch output ports. Congestion
is caused by routing many connections to the same output port (port 0 in the simulations).

The drop from front, and the partial frame drop variants, were implemented at all switch output
port bu�ers. The cell picked for transmission with partial frame drop from front is always a cell
that does not belong to a dropped frame. Cells from damaged frames at the front of ther bu�er
are dropped till a cell from an undamaged frame is found.

The output links of the switch terminate at the ADSUs. Cells arriving at the ADSU are
assembled into packets and put in the queue at the destination side. Packets with lost cells which
cannot be successfully reassembled at the ADSU are dropped at the ADSU. The TCP receiver
on the destination side, ACKs every packet. The ACK is delayed by a speci�ed value and in our
simulations this delay is set to 60 ms for modeling US transcontinental delays. This delay could
well have been added to the propagation delay of the links and was added in the destination only
for convenience. Note that this is not the same as using the \delayed ACK sending" used in some
TCP implementations where cumulative ACKs are sent (in the absence of reverse tra�c) only upon
expiration of an interval (typically 200 ms) timer. We did not use this \delayed ACK sending"
mode in the simulations for the results presented. ACKs are sent back through the switch from
the destination to source in the same manner as data packets. Since we were only interested in
situations where the bottleneck is in the network, we simulated systems where end-system bu�ers
never over
owed. Send window sizes were strictly determined by network bu�ering and capacity,
and not due to end system limitations. Because we are interested in networks with high-bandwidth
delay products, window scaling as proposed in [7], may be necessary. We also assumed the time-
stamp option. We used a timer with much �ner granularity than the typical 500 ms. This is
not signi�cant since most losses (in all cases except during periods when windows were less than
3 packets) are detected by the fast retransmit procedure which does not use timers. Round trip
times were estimated ignoring ambiguous ACKs as in [8].

For the simulations, we used a version of TCP-Reno, which includes the fast retransmit option
and a method for reducing the incidence of slow start, proposed by Van Jacobson in 1990 [6]. Even
though we did not simulate TCP-Tahoe with fast retransmit, nor the recently proposed Vegas
enhancements [1] to TCP, we expect the earlier congestion warning to translate to throughput
increases for these cases also.

4 Performance Comparison with Tail Drop

The �gures in this section present the simulation results comparing the performance of drop of front
with that of tail drop. All �gures show throughput as a function of the congested ATM switch
output port bu�er size. Throughput is de�ned as the \good throughput" seen by TCP sources:

6

3 The Simulated System

The simulated system is shown in Figure 1, TCP sources are connected to routers and ATM Data

Router and ADSU with buffering

Switch output port buffers with
drop from front queueing

TCP sources
TCP sources

DS 3 links

Figure 1: Simulated system with TCP sources, Routers, ADSUs, and ATM switch

Service Units (ADSUs). The router receives packets from TCP sources and passes them to the
ADSU which converts the packets to ATM cells. We used only two TCP packet sizes in the
simulation: 4388 bytes for data packets and 64 bytes for acknowledgement (ACK) packets. These
translate to 92 cells per data packet and 2 cells per ACK packet. Routers do not become bottlenecks
in our simulations and bu�ering at the routers is kept su�ciently high so as not to cause losses2.

On the sending side, the ADSU splits TCP packets into cells, assigns the right virtual circuit
for transport (virtual circuits are set up statically during initialization) and transmits the cells on
the outgoing DS-3 links from the ADSUs. The DS-3 links (using the Physical Layer Convergence
Procedure, PLCP, over DS-3) typically operate in a slotted manner with slot duration 10.4 �secs.
However, on the input side to the switch, we did not use slotting on the DS-3 links and so cell
transmissions from the ADSU do not have to wait until a slot boundary. The links connected to
the switch output port operate in a slotted manner. The mix of slotted and unslotted links did
not alleviate \winner take all" type phasing e�ects and we had to resort to randomization. For
tail drop, when a cell arrives to a full bu�er instead of dropping the incoming cell (slotting and
phase e�ects ensure then that one source will always be the winner in entering the bu�er), the cell
dropped is equiprobably either the incoming cell or one of the �rst few (we used the fan-in factor

2No real routing functions are performed. The routers at present just add one more non-bottlenecking hop before

and after the switch.

5

2 Bu�er Management Strategies for TCP

This section gives a short description of relevant bu�er management strategies that have been
proposed to improve TCP performance.

2.1 Partial Frame or Packet Drop

Whenever a cell is dropped (from the front, tail, or anywhere else in the bu�er) the TCP packet to
which the cell belongs will be retransmitted entirely. So there is no point in transmitting cells from
already damaged packets to the destination and further cells from a damaged packet may as well
be dropped (not let into the bu�er) to prevent wasted bu�er and bandwidth usage. This strategy
is called "Partial Packet Discard" in [11]. In this paper, packet and ATM AAL5 frames are used
synonymously and so we refer to this strategy as partial frame drop. The frame drop is partial
because at the time of cell drop, some cell from the same frame may already have been transmitted.
Also, no search of the bu�er is done to eliminate all cells from damaged frames.

For partial frame drop from tail, whenever a cell is dropped a bit is set so that until the end
of that frame all arriving cells from that frame are also discarded (the remainder of the frame is
discarded). For partial frame drop at front, whenever (because a cell attempts to enter a full bu�er)
the cell at the front of the bu�er is dropped, a bit is set and all remaining cells of the frame are
dropped as they reach the front of the bu�er.

Though Romanow and Floyd [11] propose partial frame drop as a mechanism for throughput
improvement, for the WAN environment that we consider, partial frame drop by itself will not
improve performance su�ciently. This is because wastage of bandwidth due to transmission of
cells from damaged packets is only a secondary factor in throughput degradation. Partial frame
drop must be used in conjunction with another scheme such as RED or drop from front.

2.2 Random Early Detection

In the form of RED that we consider, we associate a drop probability with each bu�er occupancy
level. When an item (such as a cell) arrives, it is dropped with probability equal to the drop
probability for the current bu�er occupancy. So when RED is applied at the cell level, the test of
whether to drop an item or not is performed upon every cell arrival. To apply RED on frames as
the droppable items, we perform the drop test only upon arrival of the �rst cell of a frame. If the
test causes this cell to be dropped then all subsequent cells of the frame are also dropped. So RED
applied at the frame level drops whole frames.

For the simulation results in Section 5, we used an exponential function to associate drop
probabilities with queue lengths. We experimented with linear and inverse-square drop probabilities
and found that they do not work well. Note that the RED that we use is di�erent in details
from the scheme proposed by Floyd and Jacobson [4]. They �rst estimate the average queue size
using exponential averaging over 500 packet arrivals. This average queue size is compared against
minimum and maximum queue thresholds. If the average is greater than the maximum queue
threshold, the incoming packet (Floyd and Jacobson's description is for packet TCP) is dropped. If
the estimated average queue size is between the minimum and maximum thresholds then a linear
drop function modi�ed to attempt to space drops at regular intervals is used.

4

Madhow [9] show that for TCP Tahoe without ATM celli�cation, to prevent throughput collapse
due to losses occurring in the slow-start phase itself, � must be at least 1/3. For our studies, we
simulated TCP with two-way tra�c over a router and an ATM switch with the ATM switch output
port being the only bottleneck. The simulations indicate that for \Reno with taildrop" � must be
at least three to get decent throughput, while for \Reno with drop from front" the minimal value
of � is closer to one (see Section 4 for throughput plots). For links with large bandwidth-delay
products, this means that the bu�er sizes must be large. The early-warning e�ect due to \Drop
from Front" is then considerable.

An important mechanism that has been proposed to avoid throughput collapse is Floyd and
Jacobson's [4] Random Early Detection (RED) and related mechanisms. We compared the per-
fomance of drop from front to variants of RED. A summary of RED is in Section 2 and detailed
simulation results are in Section 5. We �nd that drop from front performs better than RED when
both schemes drop cells without trying to drop all further cells from already damaged packets, i.e.
without partial packet discard. When the schemes pay attention to the packet level, drop from
front (with partial packet discard) performs almost as well as RED (with complete packet discard).
However, drop from front has the advantage that the switch does not need to maintain a table of
drop probabilities and does not have to know the tra�c type being carried. This is because drop
from front also reduces latencies for succesfully transmitted packets and hence is a sensible policy
to use for delay sensitive non-feedback controlled tra�c as well.

This reduction in latency has been shown by Yin and Hluchyj [13] who considered a \drop from
front" scheme for a very di�erent problem where none of the sources are feedback controlled. They
found that drop from front results in shorter average delay in the bu�er for eventually transmitted
packets and recommended its use for time-constrained tra�c. It is easily seen that this shorter
average delay is due to the increased e�ective service rate when some packets at the front of the
bu�er are dropped instead of transmitted, and that the decrease in delay is roughly proportional
to the fraction of packets dropped.

While decreased cell delay is roughly proportional to the loss rate, \Drop from Front" creates
holes one bu�er drain time further forward in the packet stream than \Taildrop", and the amount of
earlier warning always is about one bu�er drain time, independent of the loss rate. What we see here
is an application of the idea that if a switch informs sources of congestion by modifying the packet
stream, it should always attempt to make the modi�cations as far forward in the bu�er as possible.
If it does not matter which source gets the information, it is the most forward packet or cell that
should be modi�ed. Dropping is an extreme form of modifying, and in the case of TCP the only
modi�cation the source understands. The same idea implies that if \Forward Explicit Congestion
Noti�cation" (FECN) or \Backward Explicit Congestion Noti�cation" (BECN) gets implemented,
the decision to set the congestion bit should be made shortly before the cell is transmitted.

The remainder of this paper is organized as follows: Section 2 brie
y reviews the salient back-
ground information regarding TCP, RED, frame dropping, etc. Section 3 describes the TCP over
ATM system simulated in our performance studies. Section 4 discusses simulation results compar-
ing drop from front to tail drop. Section 5 discusses simulation results comparing drop from front
to RED. Conclusions are in Section 6.

3

variations. The performance of drop from front is also comparable to that obtained using variations
of Random Early Detection (RED) and it outperforms RED when RED is implemented at the cell
level.

In this paper, we studyWide Area Networks (WANs) with high bandwidth-delay products where
the bu�ering at bottleneck links is at most (and often less) a small multiple of the bandwidth-delay
product. In this situation, it is well known (see eg [14], [12], [15], [9]) that if a bottleneck bu�er in
the network is not large enough, the \over-reaction" of the TCP sources to congestion can cause
link starvation and throughput collapse. This problem is even more serious in the ATM-part of a
network than in the classical router based part of the network. Also, in this WAN environment, the
throughput loss in TCP over ATM [11] due to transmission of cells from already damaged packets
is only a secondary e�ect and a solution such as Partial Packet Discard [11] does not by itself give
su�cient throughput improvements.

We propose \Drop from Front" as a partial solution to the problem of throughput collapse
in networks where TCP represents a sizeable part of the load. Drop from Front can be used in
conjunction with other strategies such as Partial Packet Discard. We will show that moving to a
\Drop from Front" strategy considerably improves performance and allows use of smaller bu�ers
than is possible with \Taildrop". While our analysis is for an ATM cell-bu�er carrying only TCP
tra�c, we expect our conclusions to remain valid for packet-bu�ers in routers, and for bu�ers where
TCP is only a sizeable part of the load.

TCP assumes packet losses to be symptomatic of congestion and TCP sources cut back their
window sizes upon detection of packet loss [5]. The TCP fast retransmit mechanism, introduced by
Van Jacobson, detects packet loss by counting duplicate acknowledgements and provides a means
for quick detection of packet loss1 without waiting for time-outs. These duplicate acknowledgements
are received by the source when the destination detects missing packets in the stream delivered
to it by the network. During congestion episodes when bu�ers are full, drop from front causes
the destination to \see" missing packets in its stream approximately one bu�er drain time earlier
than would be the case under tail drop. The sources correspondingly receive earlier duplicate
acknowledgements causing earlier reduction in window sizes.

This earlier reaction results in considerably higher throughput because of TCP's drastic reduc-
tion in window sizes upon detection of loss. Though the speci�c reduction dynamics depend on
the TCP version, in all versions the window is at least halved upon loss detection (for Reno the
window is halved for each packet loss, the proposed Vegas modi�cation aims to only halve the
window for the �rst packet loss in a congestion episode, and for Tahoe the window is set to 1 and
then increased rapidly to half the value before loss). Halving the window causes the source to stop
sending packets for approximately half a typical Round Trip Time. With drop from front, a few
sources (with packets near the front at congestion onset) receive earlier congestion noti�cation.
The drastic rate reduction from these sources allows cells from other sources to successfully enter
(and leave) the bu�er. The shortened congestion episode with fewer sources losing packets greatly
reduces or eliminates later overreaction by more sources.

This throughput-collapse due to the TCP over-reaction to packet loss decreases in severity if
the bottleneck bu�er is increased in size (see, for instance, the simulation results in Section 4). Let
� denote the the normalized bu�er size at a bottleneck link de�ned as the number of bu�ers divided
by the product of the link speed and the \typical" roundtrip time outside the bu�er. Lakshman and

1except when window sizes are extremely small

2

The Drop from Front Strategy in TCP and in TCP

over ATM

T. V. LakshmanyArnold Neidhardt� Teunis J. Ott��

y AT&T Bell Labs � Bellcore �� Bellcore

ATM Networks Research Dept. 331 Newman Springs Road 445 South Street

101 Crawfords Corner Road Red Bank, NJ 07701 Morristown, NJ 07962

Holmdel NJ 07733 USA USA USA

Abstract

This paper proposes the use of a Drop from Front scheme for improving TCP performance

in high bandwidth-delay product networks. In particular, for \TCP over ATM" we compare the

performance when drop from front is used at the output port of ATM switches with the perfor-

mance under tail drop, its variations, and with variations of Random Early Detection (RED).

In drop from front, when a cell arrives at a full bu�er, the cell closest to being transmitted is

dropped, thus creating space for the arriving cell. This causes duplicate acknowledgements to

be sent one whole bu�er drain time earlier than is the case under tail drop. These quicker dupli-

cate acknowledgements cause TCP with Fast Retransmit to recognize losses faster and invoke

congestion control actions earlier than would be the case under tail drop. This earlier reaction

translates into considerable performance improvement. Hence, Drop from front successfully

utilizes the ability of TCP with Fast Retransmit to quickly recognize and react to congestion

information (at the third repeat acknowledgement, as opposed to time-out). Roughly, the earlier

action by the sources causes the congestion not to grow quite as severe, which prevents later

over-reaction by the sources, and thus increases throughput. Our simulations show that, for the

same bu�er size, drop from front results in considerably higher TCP throughput than tail drop,

and for all but very small bu�ers even higher than tail drop combined with partial frame drop.

Without partial frame drop, drop from front performs better than RED and with partial frame

drop its performance is very close to that of RED with complete frame drop. Drop from front is

also fairer than tail drop because it partially counteracts TCP's bias against connections with

larger round trip times.

1 Introduction

In packetized communication, whenever a packet attempts to enter a full bu�er, packet loss is
inevitable. The prevalent custom is to discard the packet (or cell) attempting to enter the queue.
Following Romanow and Floyd [11], and Floyd and Jacobson [4] we will call this \tail dropping".
However, there are no compelling reasons why tail dropping should be the method of choice. We
advocate use of a drop from front policy under which when a packet (or cell) arrives to a full bu�er,
the arriving packet is allowed in, with space being created by discarding the packet (or cell) at
the front of the bu�er. We show that for networks using TCP, the Internet transport protocol, a
drop from front policy results in better performance than is the case under tail dropping and its

1

