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ABSTRACT

This paper studies the $M/G/1$ queue where a special (test) customer can get service only if he has simultaneous
access to the server and a second resource. All other customers only need access to the server. The second resource
becomes available after an exponentially distributed amount of time. The ordinary customers are served according
to the FIFO discipline. The test customer has the freedom to leave his place in the queue at any time and join the end
of the queue. If he reaches the server before the second resource becomes available, he then must return to the back
of the queue.

We derive the waiting time distribution of the test customer given that he always maintains his position in the queue
until he reaches the server. A number of conditions are given under which this "move-along" policy is optimal, i.e.,
minimizes the test customer’s mean delay until service. These conditions depend on the amount of information and
freedom of action available to the test customer.
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1. PROBLEM DESCRIPTION, AND OUTLINE

The problem studied in this paper is derived from the scheduling problems which occur in a service

system with multiple resources, where a customer can get service only when all the resources it needs are

simultaneously available. The prototype multi-resource service system can be thought of as a multi-processor

computer system or a database system with locking mechanisms for integrity protection. The simplified problem

considered here is described in [Gopinath, 1984], and has become known as the "Waiting for Godot" problem. This

simplification still captures some of the effects of waiting for simultaneous availability of multiple resources, and, as

is seen in this paper, is reasonably tractable.

In the model studied there is one special customer, called the test customer, who is waiting for

simultaneous availability of two resources: the server and an "extraneous" resource. All other customers only need

the server. The other customers arrive according to a Poisson process with intensity $ lambda $ and have service

times (with the server) which are i.i.d. random variables with distribution function $F ( cdot )$, Laplace Stieltjes

Transform (LST) $ phi ( cdot )$ and expected value $m$. For these other customers the service discipline is First

In, First Out (FIFO). The time until the extraneous resource becomes available is an independent, exponentially

distributed random variable with parameter $ alpha $ (expected value $ alpha sup -1 $). At the time the extraneous

resource becomes available we say that the event $E$ occurs, and once $E$ has occurred the extraneous resource

remains constantly available.

At any time the test customer has two options. He can either maintain his place in the queue, or he can

voluntarily leave his place in the queue and move to the end of the queue. Whenever he reaches the server after

event $E$ has occurred, service starts. If the test customer reaches the server before event $E$ has occurred,

however, he must go back to the end of the queue. An interesting question, which will be partially answered, is

whether and why it is ever profitable for the test customer to use the option of moving to the end of the queue

without being forced to do so.

For a further study of waiting for simultaneous access to multiple resources it will be necessary to

consider situations where there is competition for the external resources, or where many other customers are also

waiting for their own (possibly different and independent) resources, or both.
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As stated before, the test customer has the freedom to give up his place in the queue and go back to the

end of the line even when he is not facing the server. The $"move-along policy"$ is the policy where the test

customer never uses that option. With that policy he maintains his place in the queue until he reaches the server. At

that point either service starts (if in the meantime event $E$ has occurred), or he goes back to the end of the line.

Our first results, stated in Section 2, are expressions for the distribution (in fact its LST) and the

expected value of the time until service starts for the test customer, given that he uses the move-along policy, and

given that at time $t=0$ there is a random variable $X$ representing the total amount of work in front of him in the

queue, and a random variable $Y$ representing the total amount of work behind him in the queue. These

expressions of course are in terms of the joint distribution of $X$ and $Y$. Other results, also stated in Section 2,

describe under what circumstances the move-along policy is better than competing policies. The competing policies

depend on the information and degree of freedom available to the test customer. The test customer always knows

$lambda$ and $F( cdot )$. A policy is said to be optimal if it minimizes the expected value of the test customer’s

delay until service, starting from an arbitrary state. The situations considered are:

1.1 Complete Information and Freedom

In these policies the test customer always knows the (remaining) service times for all customers in the

system. He therefore exactly knows the total amount of work in front of him in the queue ($ t sub f $) and the total

amount of work behind him in the queue ($ t sub b $). At any time he can decide (based on $t sub f $ and $t sub b

$) to give up his place and join the end of the line. It will be proved that as long as

the move along policy is the best among all such "complete information and freedom" policies.

1.2 Partial Information and Complete Freedom

In these policies the test customer knows, at any time, the (remaining) service times of the customers in

front of him, but only the number of customers behind him. As a result he knows the total amount $t sub f$ of work

in front of him and the total number $j$ of customers behind him. At any point in time he can decide (based on $t

sub f$ and $j$) to give up his place and join the end of the queue. It will be proved that if

then the move-along policy is the best among all such "partial information and complete freedom" policies.
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1.3 Minimal Information and Complete Freedom

In these policies the test customer only knows the numbers $i$ and $j$ of customers in front of him,

respectively behind him, and for the customer currently being served he also knows the elapsed service time $tau$.

At any point in time he can decide (based on $i$, $j$, and $tau$) to give up his place and join the end of the queue.

It is clear that if (1.2) holds then the move along policy is the best of all "minimal information and complete

freedom " policies. It is possible (because of the smaller amount of information available) to replace (1.2) with a

weaker (larger) upper bound for $lambda$ (see (2.26)).

1.4 Minimal Information and Limited Freedom

In these policies the test customer only knows the numbers $i$ and $j$ of customers in front of him and

behind him, and is allowed to leave his place and go to the end of the queue only at service completion epochs. This

situation is called the $"discrete-epoch"$ situation. It will be proved that if

then the move along policy is the best among all discrete-epoch policies.

It is shown in [Li, 1987] that the move-along policy is the best among all discrete-epoch policies if

$lambda˜<=˜1 /[ m bar phi ( alpha )]$ where $m bar$ is the expected service time of a customer given that event

$E$ did not occur during (or before) his service. Since

the two results are equivalent, although the proof given by Li is different from that given in Section 3.

In [Honig, 1987] it is shown for deterministic service that there exists a threshhold $lambda sub 0$,

which depends on $alpha$ and $m$, such that for $lambda˜>˜lambda sub 0$, the move along policy is not optimal.

In Section 3 it will be proved that in the case of a general service time distribution there exists a threshhold $lambda

sub 0 sup *$ such that for $lambda˜>˜lambda sub 0 sup *$ the move along policy is not the optimal discrete-epoch

policy. This result is easily explained by the following simple intuitive argument. Assume that $lambda$ is quite

large (e.g., 200), $m˜=˜1$, and that $alpha˜=˜0.1$, so that the expected time until $E$ occurs is on the order of 10

service times. Suppose that initially there is one person ahead of the test customer. While the test customer is

waiting for the customer ahead of him to finish service, new arrivals are rapidly joining the queue behind him.

Consequently, if the test customer chooses to maintain his position until he reaches the server, he will most likely

have to wait in back of all of the (approximately 200) new arrivals. Alternatively, if the test customer decides to
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join the back of the queue after, say, the first 100 new arrivals, which most likely occurs during the service epoch,

he will almost certainly reduce his delay.

The previous results suggest the following conjecture:

Conjecture: Given $ alpha $ and $F( cdot )$ there exist critical levels $ lambda sub k sup * ,˜1˜<=˜k˜<=˜4$, $k=1$

for "complete information, complete freedom", $k=2$ for "partial information, complete freedom", $k=3$ for

"minimal information and complete freedom", and $k=4$ for "minimal information and limited freedom", with

such that in situation $k$ ( $k$=1,2,3,4) the move-along policy is the best of all situation $k$ policies if and only if

>From (1.3) it is apparent that $lambda sub 4 sup *˜>=˜ 1 over {abs phip ( alpha ) abs}$.

In Section 2 we give, without proofs, the main results of this paper. The proofs of these results are given

in Section 3. Section 4 discusses a related problem, where the test customer can decide to wait outside the queue

before joining the end of the line. Finally, some specific service distributions are considered in Section 5, and

Section 6 discusses some other related problems.

2. NOTATION AND THE MAIN RESULTS

At time zero the test customer has a total amount of work $X$ in front of him and a total amount of

work $Y$ behind him in the queue. The joint distribution of $X$ and $Y$ is given by

and the marginal distributions of $X$ and $Y$ are denoted as

Given any distribution $ R ( cdot )$, the LST of $R$ is denoted by $ psi sub R ( cdot ) $. In particular,

The distribution of $T$, the time until the test customer starts service, of course depends on $P( cdot , cdot )$ and

on the policy used. $etap ( cdot )$ denotes the LST of $T$ given that the move along policy is used:

If $X$ and $Y$ are independent we denote this as $ etagh (s)$. By a (hopefully not confusing) abuse of notation we

define

and
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(where $F sup *i ( cdot )$ denotes the $i$-fold convolution of $F( cdot )$). Finally, we define:

(where $ eta sub i,0 (s) $ is defined as in (2.6)), and we write $eta sub G (s)$ for $eta sub G,H (s)$ when $Pr "{"

Y˜=˜0 "}"˜=˜1$ (no customers are behind the test customer).

2.1 Waiting Time Distribution and Move-Along Mean Delay

Theorems 1 and 2, which follow, give explicit expressions for $eta sub i (s)$ and $eta sub P (s)$ in

terms of $lambda$, $m$, $alpha$, $phi (s)$, and $psi sub P ( s sub 1 , s sub 2 )$, and will be proved in Section 3.

The basic idea of the proofs is as follows: If there is a deterministic amount $ t sub f $ of work in front of the test

customer, and a random amount $Y$ of work behind him, then the test customer first waits for an amount of time $ t

sub f $. If by that time event $E$ has occurred, $ T ˜=˜ t sub f $. If not, at time $ t sub f $ the test customer is at the

end of the queue with an amount of work in front of him equal to $Y$ plus the service times of all customers who

arrived in the time interval $ [ 0 ,˜ t sub f ] $. Averaging over the distribution of $ t sub f $ expresses $ eta sub G,H

(s) $ in terms of the sequence $ "{" eta sub { H star F sup { star k } } (s) "}" sub k=0 sup inf $.

Choosing $ Y = 0$ and $ G ˜=˜ F sup { star i } $ expresses $ eta sub i (s) $ in terms of $ "{" eta sub k

(s) "}" sub k=0 sup inf $, and makes it possible to compute $ eta sub i (s) $ and thus prove Theorem 1. Theorem 2

is then proved by repeated use of the same idea. Section 3 not only contains the proofs of Theorems 1 and 2, but

also a number of intermediate results such as expressions for $ eta sub G,H ˜ (s) $ and $ eta sub { t sub f ,˜ t sub b }

˜ (s) $. Some readers may prefer to read Section 3 before reading the remainder of this section.

The results in this section are expressed in terms of the sequences $"{" yk (s)"}"$, $"{" ytk (s)"}"$,

$"{" xk (s)"}"$, and $"{" xtk (s)"}"$, which are defined as:

For $s˜>=˜0$ it is easily shown that

and

where the ‘less than or equal to’ signs are equalities if and only if $s=0$. The sequences $yk (s)$ and $xk (s)$ are

shown graphically in Figure 1. $yinf (s)$ and $xinf (s)$ satisfy

where $beta (s)$ is the LST of the lengths of the busy periods in the $M/G/1$ queue with $lambda ,˜F( cdot ),˜phi (

cdot )$. In section 3 a number of results related to (2.9) and (2.10) will be derived which show that the infinite
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series in Theorems 1, 2, and 3 below converge uniformly for $Re (s)˜>=˜0$.

Theorem 1:

where

Theorem 2:

where $x sub -1 (s)˜==˜0$.

The expected value of the time until the test customer starts service, assuming the move-along policy is

adopted and that the joint distribution of work in front of and in back of the observer is given by (2.1), is denoted as

In analogy with the notation introduced before, $tbgh$ denotes the expected delay when $P(x,y)˜=˜G(x)H(y)$,

$tbfb$ denotes the expected delay given that $X˜=˜tf$ and $Y˜=˜tbb$, $tbij$ denotes the expected delay when

$G(t)˜=˜F sup *i (t)$ and $H(t)˜=˜F sup *j (t)$, and $tb sub i$ denotes the expected delay when $G(t)˜=˜F sup *i (t)$

and $Pr"{"Y = 0"}"˜=˜1$. Taking the derivative of the expression in (2.13) gives the next Theorem.

Theorem 3:

where

is the mean delay delay given that $X˜=˜Y˜=˜0$. $X ba$ is the expected value of $X$, and $yk˜==˜yk (0)$, where

$yk (s)$ is defined in (2.8).

If $G(t)˜=˜F sup *i (t)$ and $H(t)˜=˜F sup *j (t)$, i.e., there are $i$ customers ahead of the test

customer, none of whom have received any service yet, and $j$ customers in back of the test customer, (2.15)

becomes

where $xk˜==˜xk (0)$, and $xk (s)$ is defined in (2.8).

2.2 Conditions for Move-Along Optimality

A $policy$ is a sequence of $actions$ which the test customer may take, and in general each action
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depends on the entire history of states visited. The only allowable action the test customer may take is to give up his

current position in the queue, and move to the back of the queue. A policy is said to be $optimal$ if it minimizes

(over the entire class of allowable policies) the test customer’s expected delay until the start of service, given some

arbitrary initial state.

Let $D(X,Y; PI )$ denote the expected time until the start of service for the test customer given that

initially the amounts of work in front of him and behind him are $X$, respectively $Y$, and given that consistently

policy $PI$ is used. Let $PI sub MA$ denote the move along policy. The maximum principle from dynamic

programming suggests that $PI sub MA$ is optimal if and only if

for all (nonnegative) random variables $X$ and $Y$. This is a consequence of well known results in Markov

Decision theory. Intuitively, it can be seen as follows: suppose there is a time $t˜=˜L$ such that for $t˜>˜L$ the

move-along policy will be used. The problem is to find the optimal policy for $t˜<=˜L$. But this now is a finite

horizon dynamic programming problem, and (2.18) implies that the move-along policy is always optimal. By

choosing $L$ sufficiently large, the probability that $T˜>˜L$, where $T$ is the time until the test customer starts

service, can be made arbitrarily small. This implies that the "end effect" of what happens after time $L$ becomes

irrelevant, and that the move-along policy is optimal. This argument can be made rigorous by observing that in the

worst case ($rho˜>˜1$), the expected amount of work in the system at time $t$ grows linearly with $t$, while the

probability that the extraneous resource is not yet available at time $t$ is $e sup {- alpha t}$, and $lim from {L˜-

>˜inf} ˜int sub L sup inf ct e sup {- alpha t} dt˜=˜0$ for any constant $c$.

If $X˜=˜tf$ and $Y˜=˜tbb$, then (2.18) becomes

For the case $G(t)˜=˜F sup *i (t)$ and $H(t)˜=˜F sup *j (t)$, the condition (2.18) becomes

for all positive integers $i$ and $j$. It is therefore of interest to study $tbf+b ˜-˜tbfb$ as a function of $lambda$,

$alpha$, and $m$. The next corollary is obtained from Theorem 3.

Corollary 1:

Averaging over $tf$ and $tbb$ for the case where $X$ and $Y$ are independent gives
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If $G(t)˜=˜F sup *i (t)$ and $H(t)˜=˜F sup *j (t)$, (2.22) becomes

The expressions (2.21)-(2.23) are used to prove the following four Theorems, which imply the results stated in

Sections 1.1 - 1.4. The condition on $lambda$ in each case ensures that $every$ term in the corresponding sum in

(2.21)-(2.23) is positive. The following theorems therefore give sufficient, but not necessary, conditions for the

move-along policy to be optimal.

Theorem 4: If $lambda m˜<=˜1$, the condition $tbfb˜<=˜tbf+b$ holds for all $tf ,˜tbb ˜>=˜0$.

Theorem 4 applies to the "complete information and freedom" situation and establishes the statement

made in subsection 1.1.

Theorem 5: If $lambda ˜<=˜alpha over {1˜-˜phi ( alpha )}$, the condition $tbgh˜<=˜tb sub G*H$ holds for all

$G,˜H$ such that $X˜=˜tf$ and $H(t)˜=˜F sup *j (t)$, for any $tf˜>˜0$, $j˜>=˜0$.

Theorem 5 establishes the statement made in subsection (1.2). To prove the statement in subsection

(1.3) some more notation is needed. Let

(where superscript "+" denotes limit from the right and superscript "-" denotes limit from the left), i.e., $F sub tau

(t)$ is the probability distribution of the remaining service time given that the customer has been in service $tau sup

-$ time units, and let

Suppose that initially there are $i$ customers ahead of the test customer, and $j$ customers behind the test

customer, and that the elapsed time since the customer at the front of the queue started service is $tau$. For this

case $phig (s)˜=˜phi sup i-1 (s) phit (s)$ and $phih (s)˜=˜phi sup j (s)$. The next theorem gives a weaker condition

on $lambda$ than that given in Theorem 5.

Theorem 6. If there are initially $i$ customers in front of the test customer, and $j$ customers in back of the test

customer, then the condition $tbgh˜<=˜tb sub G*H$, where $phih (s)˜=˜phi sup j (s)$, $phig (s)˜=˜phi sup i-1 (s)

phit (s)$, and $phit (s)$ is defined in (2.25), holds for all $i$, $j$, and $tau$ if



-10-

This condition on $lambda$ is weaker than the condition stated in Theorem 5 since ${1˜-˜phig ( alpha

)} over { abs phigp ( alpha ) abs }˜>=˜alpha$ for any distribution $G(t)$ over $[0,˜inf )$. If $tau$, the elapsed time

since the customer at the front of the queue started service, is taken to be zero, then $phig (s)˜=˜phi sup i (s)$, and

the upper bound on $lambda$ in (2.26) can be evaluated to give:

Corollary 2: If $lambda˜<=˜1 over { abs phip ( alpha ) abs }$, the condition $tbij˜<˜tb sub i+j$ holds for all

positive $i$ and $j$.

The move-along policy is therefore optimal for the discrete-epoch problem if $lambda˜<=˜1/ abs phip ( alpha ) abs

$.

It will be shown in the next section that

so that Theorems 4, 5, 6, and Corollary 2 give progressively weaker conditions on $lambda$ corresponding to less

information or freedom available to the test customer.

We also have the following conjecture about the expression in (2.26):

Conjecture:

Namely, we believe that for $tau˜>=˜0$ fixed the expression $[1- phig ( alpha )]/ abs phigp ( alpha ) abs $ is

increasing in $i$. We have not succeeded in proving this. Neither have we succeeded in proving the even stronger

statement (which probably is not always true) that $[1- phig ( alpha )]/ abs phigp ( alpha ) abs $ is increasing if $G(

cdot )$ is stochastically increasing.

To show that the move-along policy is not optimal for a given $lambda$, $m$, and $alpha$, it suffices

to find a particular $i$ and $j$ such that $tb sub ij˜>˜tb sub i+j$. As an example, if $i=j=1$, then (2.23) becomes

If $lambda ˜>˜ 1 over { abs phi prime ( alpha ) abs }$, then the first term in the sum in (2.29) will be negative.

However, it is $not$ true that all of the remaining terms become negative for large enough $lambda$. In particular,

so that $lambda x2p˜<˜1$ for large enough $lambda$, and $lambda x2p ˜>˜lambda abs phip ( x sub 3 ) abs ˜> ...

>˜ lambda abs phip ( yinf ) abs ˜>˜0$ (see Lemma 2 in Section 3). It therefore is conceivable that the sum (2.29) is

positive for $all˜lambda$. Nevertheless, the following theorem states that in fact for any $alpha$, the move-along
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policy is not optimal if $lambda$ is large enough.

Theorem 7: Given any $alpha$ and $j$ there exist two numbers $i sub 0$ and $lambda sub 0$ such that $tb sub

i+j˜<˜tb sub ij$ for $lambda˜>˜lambda sub 0$ and $i˜>˜i sub 0$.

The previous results suggest that for any of the situations considered, there exists a threshhold, $lambda

sub 0$, such that the move-along policy is optimal if and only if $lambda˜<=˜lambda sub 0$. To prove this result

one must show that if for some $lambda˜=˜lambda prime$, $tbfb˜<=˜tbf+b$ for all positive $tf$ and $tbb$, then it

must also be true for all $lambda˜<˜lambda prime$. (Alternatively, one could show that if for specific $tf$ and

$tbb$, $tbfb˜>=˜tbf+b$ for $lambda˜=˜lambda prime$, then $tbfb˜>=˜tbf+b$ for any $lambda˜>˜lambda prime$.)

This appears to be difficult, and it is as yet undetermined whether or not this is true.

3. PROOFS

The sequences $yk (s)$, $ytk (s)$, $xk (s)$, $xtk (s)$ are based on the map $f sub s$ defined by

In particular,

where $f sub s sup (k)$ is the $k$ times iterated map.

If $Re (s)˜>=˜0$, then $f sub s$ maps the half plane $Re (z)˜>=˜0$ into the half plane $Re

(z)˜>=˜alpha˜+˜Re (s)$. If $rho˜=˜lambda m˜<˜1$ then, for $Re (s)˜>=˜0$, $f sub s$ is a contraction map on $Re

(z)˜>=˜0$:

where the fact that $abs phip (z) abs˜<=˜abs phip [ Re (z)] abs$, which is decreasing in $Re (z)$, has been used.

Suppose now that $rho˜=˜lambda m˜>=˜1$. Since for real $s˜>=˜0$, $phi ( s )$ is decreasing in $s$,

$yk (s)$ and $ytk (s)$ in (2.8) are increasing in $s$, and $xk (s)$, $xtk (s)$ are decreasing in $s$. Hence, for $Re

(s)˜>=˜0$, $f sub s$ maps the half plane $Re (z)˜>=˜yk (0)$ into the half plane $Re (z)˜>=˜yk1 (0)$. Since (see

Figure 1) $lambda abs phip [ yinf (0)] abs˜<˜1$, there exist a $rho *$, $0˜<˜rho *˜<˜1$, and a $k sub 0$, with the

property that if $k˜>=˜k sub 0$ then

for all $s$, $z sub 1$, $z sub 2$ with $Re (s)˜>=˜0$, $Re (z sub i )˜>=˜0$. For $rho *$ we could choose

and for $k sub 0$ we choose
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(3.6) uses the fact that for $s˜>=˜0$, $yk (s)$ is increasing in both $k$ and $s$ (see Figure 1).

As a straightforward application of (3.2)-(3.4) we can obtain relations such as

where $rho$, $rho *$, $k sub 0$, do not depend on $s$. The series in Theorems 1, 2, and 3 therefore converge

uniformly on compact subsets of $"{" s˜:˜Re (s)˜>=˜0 "}"$. In the remainder of this section we will mostly

disregard convergence issues.

The following lemma is needed to prove Theorems 1 and 2.

Lemma 1.

Proof:. Suppose that initially the amount of work in front of the test customer is exactly $t$. If by the time this

work has been done by the server event $E$ has occurred, then $ T˜=˜t $. Otherwise, the test customer first waits

time $t$, and then becomes the last customer in a queue with an amount of work in front of him equal to $Y$, the

initial amount of work behind him, plus the work required by customers who arrived in the meantime. (3.8) is a

formal statement of this observation, and allows the amount of work in front of the test customer to be random, as

long as it is independent of the amount of work behind the test customer.`

Remark. By defining

we can rewrite (3.8) as

This result makes it easy to prove Theorems 1 and 2. Theorem 1 is obtained by choosing $ Y˜=˜0 ˜ left ( H (x) ˜=˜ 1

˜ roman {for} ˜ x ˜>=˜ 0 right ) $ and $ G ˜=˜ F sup { star i } $.

Proof of Theorem 1: Assume that at time zero there is no work behind the test customer, and there are $i$

customers in front of him, none of whom have received any service yet, so that $ Y = 0$ and $ G ˜=˜ F sup { star i }

$. >From (3.10) we have for $ i ˜>=˜ 1 $:

In addition to (3.11) we also have the boundary condition

Namely, if the test customer is alone in the system, then the first event to occur is either $E$, or the arrival of an
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ordinary customer.

To prove Theorem 1 we must show that (2.11), (2.12) are the unique solution to (3.11), (3.12). First we

substitute (3.12) into (3.11), and obtain for $ i ˜>=˜ 1 $,

This can be rewritten as

where

>From (3.9) and (3.15) we see that

and for $ i ˜>=˜1 ,˜ Re (s) ˜>=˜ 0 $,

Hence, the solution to (3.14) is unique. Moreover, the solution to (3.14) can be obtained by choosing $ eta sub i sup

(0) ˜ (s) $ arbitrarily, and then iterating the contraction map (in $ JJ ˜ cdot ˜ JJ sub inf $)

Clearly, $lim from {n -> inf} eta sub i sup (n) (s)˜=˜eta sub i (s)$. This is one of the ways (2.11), (2.12) can be

derived. Our original derivation was a form of "clever trying". Since the solution is available, it suffices to verify

that (2.11), (2.12) indeed form a solution to (3.11), (3.12). It is easily seen that for any distribution $G$ on $ [ 0, inf

) $, and with $ p sub k sup (G) (s) $ defined as in (3.9), and $ x sub m (s) $ and $ y sub m (s) $ as in (2.8):

It now is easy to verify that (2.11), (2.12) indeed is a solution to (3.11) - (3.13). This completes the proof of

Theorem 1.`

Proof of Theorem 2. The proof of Theorem 2 consists of the following steps: (1) Use Theorem 1 and (3.9), (3.10)

to obtain an expression for $ eta sub G (s) $. (2) Use this expression for $ eta sub G (s) $ and (3.9), (3.10) to get an

expression for $ eta sub G,H (s) $ for general $G,˜H$. This gives $ eta sub { tf , tbb } (s) $ as a special case, which

immediately gives $ eta sub P (s) $.

>From (3.9), (3.10), and Theorem 1,
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which is the promised expression for $etag (s)$. Substituting for $eta sub {H*F sup *k} (s)$ in (3.10), and noting

that $psi sub {H*F sup *k} (s)˜=˜phih (s) phi sup k (s)$, gives

For the case $Pr"{"X˜=˜tf"}"˜=˜1$ and $Pr"{"Y˜=˜tbb"}"˜=˜1$, $phig (s)˜=˜e sup {-s tf}$, and $phih (s)˜=˜e sup {-s

tbb}$, and (3.21) specializes to

where $x sub -1 (s)˜==˜0$. Averaging over $tf$ and $tbb$ gives (2.13).`

Proof of Theorem 3: To compute the derivative of the expression (2.13), it is necessary to compute

where $yk ˜==˜yk (0)$. >From (2.13),

Using the fact that $yk (0)˜=˜ytk (0)˜=˜yk$,

Combining (2.14), (3.24), and (3.25), and noting that $phigp (0)˜=˜- X ba$, gives (2.15).

>From (2.12),

`

As a side remark, we outline an alternative derivation of (2.22). In analogy with the recurrence relation

(2.14), the following recurrence relation can be derived for the mean delay $tbgh$,

where $tb sub {H*F sup *k}$ is the mean delay until service given that the amount of work in front of the test
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customer is the random variable $Y$ plus $k$ service times and $p sub k sup (G)˜==˜p sub k sup (G) (0)$. If

$Y˜=˜0$, then

where $tbk˜=˜tb sub {F sup *k}$ and $p sub k sup (i)˜==˜p sub k sup {( F sup {star i} )}$. The boundary condition,

in analogy with (3.12), is

The contraction mapping technique, which can be used to obtain the solution to (3.9), (3.10), can also be applied to

(3.28), (3.29), thereby giving explicit expressions for $tbij$ and $tbgh$.

Before proving Theorems 4-7, some basic properties of the sequences $yk$ and $xk$, which follow

directly from the discussion at the beginning of this section, are stated. The sequences $yk$ and $xk$ are illustrated

graphically in Figure 1.

Lemma 2. For real $s˜>=˜0$, the sequence $yk (s)$, defined by (2.8), increases monotonically and converges to

$yinf (s)$, and the sequences $xk (s)$ and $ abs phip [ yk (s) ] abs $ each decrease monotonically and converge to

$xinf (s)$ and $ abs phi prime [ yinf (s) ] abs $, respectively. Also, $yinf (s)˜<˜s + lampha$.

Proof of Corollary 2: >From (2.15), for the case $phiP ( s1 , s2 )˜=˜e sup {- ( s1 tf + s2 tbb )}$,

so that

`

The next lemma proves Theorem 4 by showing that if $lambda m˜<=˜1$, then all terms in the series

(2.21) are nonnegative.

Lemma 3: The function

is greater than or equal to zero for $tf˜>=˜0$, $tbb˜>=˜0$, and $lambda abs phip ( yk ) abs ˜<=˜1$.

Proof: Observe that

Also,
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Lemma 2 states that $yk1˜>˜yk$, therefore the derivative (3.34) is positive, which implies that $f( yk , yk1 )$ is

positive, if $lambda abs phip ( yk ) abs ˜<=˜1$. Every term in the sum (3.31) is guaranteed to be positive if

$lambda abs phip ( y0 ) abs ˜=˜lambda m˜<=˜1$.`

Notice that if $lambda m˜=˜1$, then the sum (3.31) will be strictly positive, since $xkp$ is strictly

decreasing with $k$. It therefore seems likely that there exists a threshhold $lambda sub 0˜>˜1/m$, such that if

$lambda˜<=˜lambda sub 0$ the sum (3.31) is positive for all positive $tf$ and $tbb$.

Proof of Theorem 5: For the case $phig (s)˜=˜e sup {-s t sub f}$ and $phih (s)˜=˜phi sup j (s)$, (2.22) becomes

where

Now,

and

which is positive for $k˜>=˜1$ if $1˜-˜lambda abs phip ( alpha ) abs ˜>=˜0$. For $k=0$,

which is greater than or equal to zero if

It is easily shown that ${e sup {alpha t}˜-˜1} over t˜>=˜alpha$, with equality as $t$ approaches zero. Furthermore,

it can be shown that the function $j over {1˜-˜a sup j}$, where $0˜<=˜a˜<˜1$ and $j˜>=˜1$ is an integer, increases

with $j$, so that if

then $f( yk , yk1 )˜>=˜0$ for all $k˜>=˜0$. Referring to Figure 2, it is clear that

which proves the result.`

Proof of Theorem 6: Substituting $phih (s)˜=˜phi sup j (s)$ into (2.22) gives

where

As in the preceding proofs, it is easily shown that for $k˜>=˜1$, $partial f / partial yk˜<=˜0$, and hence $f( yk , yk1

)˜>=˜0$, if $lambda abs phip ( alpha ) abs ˜<=˜1$. For $k=0$,

which is greater than or equal to zero if
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for all possible $phig (s)$ and $j˜>=˜1$. Substituting $phig (s)˜=˜phi sup i-1 (s) phit (s)$, and noting that the right

side of (3.45) is minimized by setting $j=1$, and is equal to $1/ abs phip ( alpha ) abs $ for $i=1$ and $tau =0$,

gives Theorem 6.`

Proof of Corollary 2: For this case $phig (s)˜=˜phi sup i (s)$, and we show that

increases with $i$. Assume that this is false. Then

for some $i$. This implies that

The left side assumes its maximum value, however, when $phi ( alpha )=1$, therefore this cannot be true.

Consequently,

and Corollary 2 follows from Theorem 6.`

We remark that Corollary 2 can also be proved directly from (2.23). In particular, it is easily shown

that

for $i˜>=˜1$, $j˜>=˜1$, and $lambda abs phip ( alpha ) abs ˜<=˜1$.

Proof of Theorem 7: >From (2.23) and Lemma 2

assuming $lambda$ is large enough so that $lambda x2p˜<˜1$. For fixed $alpha$ it can be shown that the last term

goes to zero faster than $O (1/ lambda )$. Therefore, for large $lambda$,

which can be negative only if

or

Since $x1˜<˜1$, $i$ can be selected large enough so that (3.51) is true for any $j$, and if $lambda$ is greater than

some threshold $lambda sub 0$, then from (3.51), $tb sub i+j - tb sub ij˜<˜0$.`

4. A MODIFIED PROBLEM

So far we have assumed that the test customer can always give up his place in the queue, and move to
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the back of the queue. It has been shown that if $lambda$ is large enough, using this option will decrease the test

customer’s expected delay until service. Suppose, however, that the test customer $cannot$ move to the back of the

queue once he is in the queue, but upon reaching the server before $E$ has occured, he can choose to wait outside

the queue any amount of time before rejoining the back of the queue. The amount of time the test customer waits is

determined according to some policy, i.e., it may be determined by observing the length of the queue. Initially,

then, the test customer may wait before joining the queue, but once in the queue he must stay in the queue until he

reaches the server. This version of the problem was in fact the original version [Gopinath (1984)], and will be

referred to as Problem 2 (P2). The problem considered so far will be referred to as Problem 1 (P1).

Lemma 4. Given any $lambda$, $alpha$, and $m$, if the move-along policy is optimal for P1, then it is also

optimal for P2.

Proof: Any allowable policy for P2 can be effectively duplicated by a policy for P1 (but not vice versa). Therefore

the optimal policy for P1 must perform at least as well as the optimal policy for P2.`

Theorems 4-6 and Corollary 2 therefore also apply to P2. Because any policy for P1 cannot in general be duplicated

by a policy for P2, the converse to Lemma 4 may not be true. That is, if the move-along policy is $not$ optimal for

P1, it is unknown whether or not this implies that the move-along policy is not optimal for P2. The following

Theorem states the analogous result for P2 as was stated in Theorem 6.

Theorem 8: For P2, given any $alpha$ and $m$, there exists a $lambda sub 0$ such that if $lambda˜>=˜lambda sub

0$, the move-along policy is not optimal.

Proof: Assume that initially there are $i$ customers in the queue, and that the test customer must decide to either

join the queue immediately, or wait until either there are $i prime ˜>˜i$ customers in the queue, or until $E$ occurs,

whichever occurs first. If the test customer chooses to wait, the mean delay until service is

where $p sub {i,i prime}$ is the probability that $E$ occurs before the queue length becomes $i prime$, $D$ is the

mean delay until service given that $E$ occurs before the queue length becomes $i prime$, and $tau sub {i,i prime}

( lambda )$ is the mean time it takes to go from a queue length of $i$ to $i prime$ (not including the test customer).

Since $D$ must be less than the mean delay given that $E$ occurs after the queue length becomes $i prime$,
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waiting outside the queue reduces the mean delay if

for some $i prime$. Clearly,

Using (2.17) and Lemma 2 gives the lower and upper bounds

and

The infinite series can be summed provided that $lambda x2p ˜<˜1$. >From (2.30) this is always true if $lambda$ is

large enough. Consequently, (4.5) becomes

The condition (4.2) is satisfied if $tb under sub i˜-˜tb ba sub {i prime}˜>˜ tau sub {i,i prime} ( lambda )$, or

For fixed $alpha$, $m$, $i$, and $i prime˜>˜1$,

Consequently, for large $lambda$ the left hand side of (4.7) becomes

which is negative for large enough $lambda$ if

Since the function $f(u)˜=˜i u sup i-1$ decreases with $i$ when $u˜<˜1$ and $i$ is large enough, (4.9) is true for

large enough $i prime$. Consequently, for any $alpha$, $m$, and initial number of customers $i$, if $lambda$ is

large enough, the observer can reduce his delay until service by waiting for the number of customers in the queue to

increase to $i prime$. Therefore if $lambda$ is greater than some threshold value $lambda sub 0$, then the

condition (4.2) is true for some $i$ and $i prime$, and the move-along policy is not optimal.`

5. EXAMPLES

We conclude with two specific examples, namely the $M/D/1$ and $M/M/1$ queues.

Deterministic Service Time (M/D/1)

For this case

and

To compute $tbgh$, it is necessary to compute the sequence

For the case $phig (s)˜=˜phi sup i-1 (s) phit (s)˜=˜e sup {-s(im- tau )}$, and $phih (s)˜=˜e sup -sjm$, (2.22) becomes
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where

>From Theorem 5, assuming that the test customer can move to the back of the queue at any time, the move-along

policy is optimal if

and from Corollary 2, the move-along policy is optimal for the discrete-epoch problem if

Exponential Service Time (M/M/1)

For this case

and

and

For the case $phig (s)˜=˜phi sup i-1 (s) phit (s)˜=˜ phi sup i (s)$, and $phih (s)˜=˜phi sup j (s)$, the expression for

$tbgh$ becomes

where

In the case of exponentially distributed service times the situations described in subsections (1.3) (minimal

information and complete freedom) and (1.4) (minimal information and limited freedom) become identical. From

Theorem 6 or Corollary 2 the move-along policy is guaranteed to be optimal if

>From Theorem 5, if the test customer knows the service times of the customers ahead of him, then the move-along

policy is optimal if

6. UNANSWERED QUESTIONS

Assuming the conjecture stated in Section 1 is true, then Theorems 4 through 6 give lower bounds on

the critical levels $lambda sub k sup *$. Further improvements to these bounds have not yet been obtained.

The following Theorem applies to the case where the queueing system has a $"finite capacity

"C˜<˜inf$, where incoming customers are blocked and disappear if there are already $C$ customers in the system

(not including the test customer).
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Theorem 9: For an $M/M/1$ queue with $C˜<=˜4$, the condition $tbij˜<˜tb sub i+j$ is $always$ true, independent

of $lambda$, $m$, and $alpha$.

Proof: For finite $C$, a finite set of linear difference equations for the mean delay $tbij$ can be written down by

inspection from which the theorem is easily verified. Details are ommitted.`

It is not known if Theorem 9 is true for any $C˜>˜4$. For a very large capacity queueing system,

Theorem 7 must apply. Consequently, there must exist a threshhold $lambda under$ (not necessarily finite), which

is a function of $C$, such that the move-along policy is optimal if $lambda˜<=˜lambda under$. How does $lambda

under$ behave as $C$ goes to infinity?

Perhaps the most interesting generalization of the problem studied here is the case where other

customers in the queue are also waiting for events to occur before they can be served. For example, all customers

may be waiting for independent events, each of which occurs after an exponentially distributed amount of time, and

each may decide to follow the move-along policy. Is the move-along policy optimal for a particular test customer?
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