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Abstract

In TCP, packet loss is is used by users of the network to gauge congestion, and
to set congestion windows. The fact that individual “signals” (packet losses) have
other effects than transmitting information about congestion makes it desirable to
keep the amount of information thus signaled quite low.

ECN (Explicit Congestion Notification, see e.g. [5]) makes it possible for Routers
to give Endstations (including sources) more detailed information about congestion
and (e.g.) about desirable congestion window sizes. This note describes and analyzes

a class of protocols using this opportunity.

1 Introduction

Consider a flow of packets in IP with per packet acknowledgement. Assume the system
allows “ Explicit Congestion Notification” (ECN, see e.g. [4], [5]): When a router recog-
nizes one of its buffers is getting close to congestion, it can set a “Congestion Indicator
Bit” in packets flowing through this buffer. To avoid confusion with the similarly named

bit in ATM with ABR, Floyd and Ramakrishnan call this the “Congestion Experienced”



(CE) bit. In this note we use that name (CE), but make different use of the bit. This
setting of the CE bit can be done probabilistically, with a state—dependent probability p.
The destination copies those CE bits into the ECN-Echo bit in acknowledgements. Thus,
the source is informed of congestion. [4] and [5] discuss a number of of implementation
issues, such a location of the bit and what to do when there is delayed acknowledgements,

etc.

When the router sets the CE bit in a packet, we also say it marks the packet. The
router can (for example) choose a state-dependent probability p and mark packets with

probability p.

[4] and [5] repeatedly state the opinion that the source of traffic must react to a
returning ECN-Echo bit that has been set (= 1) in (almost) exactly the same way a TCP

source reacts to discovering a “congestion event” that includes loss of at least one packet.
This is an opinion the author of this note does not share.

Among the advantages of marking in stead of dropping (as in RED) are (i) that no re-
transmission is needed and therefore (ii) any marking probability 0 < p < 1 is acceptable.
Drop probabilities have to be at most not much more than .1, or (for example) TCP stops
functioning. In addition, modern traffic endpoints (sources, destinations) have the ability
to interprete the meaning of a stream of ECN-Echo bits quite carefully, and for example
as a function of the type or class of service the packets belong to. The author of this
note advocates that ECN-capable flows react to ECN-Echo bits in ways that still need to
be defined and that may be quite different from the way a non ECN-capable flow reacts
to dropped packets. Since fairness requires that if the source behavior is changed, also
the router behavior must change, in a router the marking probability for ECN-capable
flows similarly may or even must be different from the dropping probability for ECN non-
capable flows. Even, the marking probability for ECN—-capable flows may depend on the
type (type of service, priority class, etc.) of the packet. Thus, the router has a number

2



Class marking | dropping
Non-ECN 0 Pnd
ECN Class 0 Po,m Po,d
ECN Class L PLm PLd

Table 1: Marking and Dropping Probabilities

of “signaling congestion” parameters: The drop probability for ECN non—capable flows;
the drop probability for ECN-capable flows (might be class dependent); and the marking
probability for ECN-capable flows (might be class dependent). For example, for RSVP
flows with a guaranteed rate (and that stay within their rate) it makes no sense to drop
unless there is no choice, and it makes no sense to mark apart from as a warning signal
that involuntary drop is imminent. Similarly, if in IP there is an option of distinguishing
between “In-Rate” and “Out—of-Rate” packets (or “in-Profile” versus “Out—of-Profile”
packets, using an “in—Rate” bit), “In-Rate” packets would be dropped only involuntarily,
and would be marked only as a warning that involuntary drop is imminent. “Out-of-Rate”
packets could be dropped as well as marked, with marking of course the prefered option.
This implies that the signalling (e.g. carried by acknowledgements) from destination to
source must separately signal markings of In-Rate and of Out—of-Rate packets. This

router behavior is illustrated in Table 1.

In the foreseeable future, ECN-capable routers would set drop probabilities for ECN
non—capable flows in a way consistent with RED or SRED or some such mechanism.
ECN capable flows would react to drop in essentially the same way as ECN non—capable
flows. This is necessary, because for some time there would be ECN-capable as well as
ECN non-capable routers. Some changes would be allowed for special classes (say flows

paying a “premium” tariff). ECN-capable routers could set the marking probability for



ECN-capable flows in just about any way, as long as Router Behavior and Flow Behavior

are designed together.

Making sure that those new (marking) behaviors have been studied and implemented
in (some) routers before many end—stations become ECN capable may very well be the

only way to make an elegant transition to a new environment.

Once ECN is ubiquitous, at least in routers, (endstations may take longer!) the mean-
ing of drop for ECN—capable flows in principle could change. This will be a hard transition
to make and may very well be impossible, because by that time there will be many ECN-

capable endstations that can not make a synchronized change.

By the same argument, the advent of ECN is an opportunity, quite likely the last
opportunity, to modify the congestion algorithms in IP. We should use this opportunity
to study Router Behavior (whether and when to mark packets) and Source Behavior
(how to react to marked and unmarked packets) as two aspects of the same problem. The
advent of ECN temporarily gives us a clean slate that we can fill in with new mechanisms,
using what we have learned in the past 20+ years, and taking into consideration the
greater capabilities in modern endstations, and the much higher bandwidths in the modern
Internet. Since this is likely the last opportunity to do a significant amount of redesign

of the control mechanisms, it is important to use the opportunity well!

In this note we study the consequences for traffic characteristics of certain “source
behaviors”, i.e. for certain ways for sources to react to packet marking probabilities.
Later, we will use the insight gained to propose router behaviors, i.e. ways for routers to

decide whether and when to mark packets.

In this note we do not yet consider class dependent marking. In particular we do not
yet consider separate marking policies for In-Rate and Out—of-Rate packets. Mechanisms

where “entry-routers” mark packets as either In-Rate or Out—of-Rate, where other routers



have different marking policies for such packets, and where the reaction of sources to
marked packets depends on whether the packets were In-Rate or Out—of-Rate, look like

a very promising area of future research.

The analyses done in this note are examples of the analyses that need to be done before
a newly designed ECN can be finalized. There is no pretension of having achieved closure.
The most important recommendation is that Router behavior and Source behavior must

be designed together and must be class dependent, i.e. depend on the class of the packet.

2 The TCP Paradigm with general increases and de-

creases

Let us consider a Congestion Window based protocol where whenever an acknowledgement
arrives at the source that acknowledges an unmarked data packet while the congestion
window is W, then the congestion window increases by incr(W), and when a marked
packet is acknowledged the congestion window decreases by decr(W). (Also, when a
packet is marked while the W is small there will be a time-out, with time—outs probably
increasing exponentially after repeated such markings. We do not consider such details
in this note). At this point it does not matter whether W is expressed in bytes or in
MSSs or in some other entity. Assuming packets are marked with probability p, and that
“locally in time” p is constant, the drift per packet in the congestion window while the

congestion window is W is

EWpi1 — Wo|W, = W] =drift(W,p) = (1 — p).iner(W) — p.decr(W) =

piner) (152 demli)

(2.1)



Let us now consider the function

g(W) = ——~. (2.2)

Assuming this function is reasonably smooth, and that p indeed is constant during a
large number of packets sent, the congestion window will tend to spend most of its time

at W values for which ¢(W) is not too far from 1%”.

It therefore is highly desirable that g(.) is a strictly increasing function with

q(1) =0, lim (W)= oo. (2.3)

W—ooo

In that case, if the marking probability p is constant, g(WW) will fluctuate around 11.%”.
Thus we can predict the average window size: find W (p) with

qW(p)) = —. (2.4)

Equation (2.3) ensures that (possibly with interpolation or rounding to an integer)
there always is a solution to (2.4). The actual window size will tend to fluctuate around
W (p). We use W(p) as approximation for the average. The functions ¢(W) and W (p)

really are response surfaces of the sources to Router Behavior.

It is useful to note here a connection with “fairness”: In the situation of (2.3), if two
different flows that react in the same way to packet markings encounter the same marking

probability p, they will tend to have the same (average) congestion windows.

Note that if the function g(.) is almost constant over a long range of W values, we
do not have fairness: if for a while 1%” happens to remain constant, equal to that gq(W)
value, and two flows start with different W values in that range of W values, they will

tend to keep their different congestion windows for a long time.



In the special case of TCP (without delayed acknowledgements, and dropping in stead

of marking) we have (congestion windows are now measured in MSSs):

iner(W) = %, decr(W) = %, (2.5)
and thus
o) = o, W(p) = 2 (2.6)

This is the basis for the celebrated square root formula, see e.g. [2].

The function ¢(.) defines a “response surface” of W to p. We see that we can first
choose g(.) arbitrarily (subject to the monotonicity and (2.3)), and then still can choose
iner(.) and decr(.) somewhat arbitrarily. Thus we have a choice of two modi operandi: we
can choose incr(.) and decr(.) functions and find out what the resulting response surface
is, or we can choose a response surface and then (with that degree of freedom gone) find

iner(.) and decr(.) functions.

If we decide to first choose the response surface g(W), (or W(p)), we can go one step
further: after choosing this response surface we do not choose incr(.) and decr(.), but we
let the source directly estimate the marking probability p, and adjust the congestion win-
dow W accordingly. This method has interesting consequences, that will be investigated
in Sections 7 and 8. In fact, under certain circumstances it leads back to a system with
iner(.) and decr(.) functions as above. Thus, it can be seen as a somewhat scientific way

of choosing such functions.

For TCP, the desire to have multiplicative decrease governed the choice of decr(.).
This led to the somewhat unfortunate result that the congestion window occasionally
halves. For connections with a long round trip time that therefore need a high congestion
window this is a problem: after a halving of the congestion window, the congestion window
increases quite slowly. This has a number of unfortunate consequences. One of these is

that TCP traffic is not very good “background” traffic for other streams.



Choosing both decr(W) and iner(W) much smaller (but leaving the quotient the same)
has the advantage that a flow following that behavior has the same average W value but
behaves much more smoothly. There is the disadvantage that the flow reacts quite slowly

to changing p.

It must be noted that not all versions of TCP are consistent in using multiplicative
decrease. Some versions of TCP allow the window to be halved only once in a round
trip time or only once per congestion episode. It must be noted that if we were to use
decr(W) =1 (MSS) in a scheme with marking instead of dropping, setting p = 1 during
one round trip time closes all windows (reduces all windows to 1 MSS or less, time—out
counting as a congestion window of less than one MSS): more draconic than halving all
windows! Thus, because a marked packet is not lost (with all the unpleasant consequences
of losing a packet), it is possible to send a strong signal by marking many packets in a
short period. Choosing decr(W) = 1 also has the effect that acknowledgement of a marked
packet does not cause transmission of a new packet. Thus, the router can fairly accurately
predict the consequences of marking a packet. With multiplicative decrease, the router

needs to know the window size to predict the consequences of marking a packet.

3 Outside the TCP Paradigm

In the previous section we had, as in TCP, incr(.) and decr(.) functions, and (in principle)
a congestion window modification is made every time the source receives an acknowledge-
ment, and the update uses the incr(.) and decr(.) functions. We call this situation the
“TCP Paradigm”. There are of course more general mechanisms. For example, the source
could count “marked” and “unmarked” acknowledgements, and every now and then (say
once every Round Trip Time RTT) update the congestion window. Such mechanisms are

outside the TCP paradigm.



Mechanisms “on the boundary of” the TCP paradigm are for example those discussed
in Section 7, where a “response surface” ¢(.), W(.) as in (2.3), (2.4) has been chosen,
an estimate p for the marking probability p is maintained, and the congestion window
actually used is W(p). Such a scheme was already referred to in Section 2. In Section 8
a very interesting such mechanism will be described, of which we then find that it can be
implemented in two different ways: one mechanism inside the TCP paradigm, the other

outside. This can be seen as a “scientific” way of choosing incr(.), decr(.).

More research is needed to check whether there are pairs of router behavior— endstation
behavior outside the TCP paradigm that are superior to all mechanisms inside the TCP

paradigm.

4 A special class of incr(.) and decr(.) functions

In the remainder of this note we restrict ourselves to incr(.) and decr(.) of the form
iner(w) = cw®, decr(w) = cowP. (4.1)

For these functions to make sense we obviously want a < 1, ¢; > 0 and 8 < 1, ¢3 > 0,
and if B = 1 we clearly need 0 < ¢s < 1. The reader who worries about implementability
will be relieved to hear that at the end we conclude that (probably) optimal parameter
values are @ = 0, 8 = 1, and that rules on how to choose ¢; and ¢, will be given. Until
that point we consider general a and 8 etc. Many of the results in this section can be
extended to more general incr(.) and decr(.) functions. At this point that is an exercise

of limited interest.
With this choice of functions as in (4.1) we get the response surface

g(w) = @) _ e oo (4.2)

iner(w) ¢
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Thus, for packet marking probability p constant, and marking independent from packet
to packet, when transporting a very big file the congestion window will tend to fluctuate

around w(p), defined as

wwz(ﬁiﬁf%. (13)

Ca2 P

When p is quite close to zero, (4.3) becomes
o\ A
atp) = ()" (14)

Cap

If we choose that “more marking signals more congestion” we must have a < 8 < 1.
In classical TCP we had ¢; =1, a=—1, ¢; = %, 6 =1

In order to study behavior of the functions above with constant marking probability
p, we study the evolution of W,, as a stochastic process. Using the same ideas as in [2]

we get the following results:

Theorem 1. If
a<fB=1,¢>0,0<ec <1, (4.5)

then for p | 0 the process (X (%))o<t<oo defined by

X(t) = p (WLI%J)l_a (4.6)

behaves as follows: there is a Poisson Process with intensity 1. In-between the points of

the Poisson Process,

d
ZX(t) = (1 - a), (4.7)

and in the points of the Poisson Process (say point 7) we have
X(H) = (1 —c)'™2X(17). (4.8)
Hence, the stationary distribution of the process X(.) is of the form
X =c(l-a)Z, (4.9)

10



where Z is a random variable the distribution of which does not depend on p or on ¢;. Z

has the form

Z = Z 1 — ¢~ Ry, (4.10)

where (Ek)2, are independent, identically distributed random variables, all exponen-
tially distributed with expected value 1. The distribution of this infinite sum of random
variables, including all its moments, was described in detail in [2]. For example, setting

¢ = (1 — ¢3)*~*) we have for all real p

oo C;H—k
EZ") =T+l {=——)- (4.11)
e \ 1—c

In particular (as is easier seen directly!)

1 1

1—c?’
st.dev(Z l1—c
Coeff.Var(Z) = tE[Z(] ) =4/ T o (4.13)

Thus, we know that the stationary distribution of the congestion window has the form

E[Z] =

and therefore

W =p =a (i1 — a)Z)Ta (4.14)
That stationary distribution, including all its moments, therefore is explicitly known.

Among other results, we have

st.dev(W)

EW] ~ coef far(Zi-=), (4.15)

coef fvar(W) =

independent of p and ¢;.

This leads to a clean expression for Coef f.Var(W)onlyifa=—-lora=0. fa=0

we get
C2

Coeff.Var(W) ~ (4.16)

2—02.
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The proof of Theorem 1, and of the corollaries above, is left as an exercise for the

reader. Hint: copy the corresponding proofs in [2].

Theorem 2. If
Ol<,8<]., Cl>0, Cg>0, (417)

then for p | 0 the process (X (%))o<t<oo defined by

X(t) =p" (WLP%J - (M) +a) ) (4.18)

Cap

with
(1+75) 1-a

"M =< V2_/3—a,

2(6 — o)
becomes the Ornstein—Uhlenbeck process with local drift

(4.19)

E[X(t+A) - X()|X(t) = 2] = —Az.(B— a)e; 7 el +o(A) (AL0),  (4.20)

1-8 1—a

and local dispersion

28 2a

Var(X(t+ A)|X(t) = z] = Acf™c, P +0(A) (A ] 0). (4.21)

Thus for p | 0 the stationary distribution of X (¢) becomes the normal distribution

with expected value zero and variance
Var(X) = ———. (4.22)

This theorem will be proven in Appendix A.

The stationary distribution of X(.) immediately translates into a stationary distribu-

tion for W,,: For p | 0, the stationary distribution of W,, has

E[W] ~ (M)m ~ <i)m7
C2p C2p

12



y o
st.dev(W) ~ a2 p_z(lf;r—a) ) (4.23)
2(8 - a)
__1-p l1—a
stdev(W) ¢, el 1

coef fvar(W) = p2A-a (4.24)

EW] = B -a)

(4.15) and (4.24) show that there is a certain charm to choosing 8 = 1: with that
choice, and that choice only, the coefficient of variation of W becomes independent of
p for p | 0 (i.e. when the congestion window is allowed to be very large). In fact, for
that choice the distribution of (ﬁ)ﬁ W becomes independent of p and ¢; for p small.

The non-dependence on p may seem no big deal, but non-dependence on p implies non—

dependence on the average value of W: scale invariance!

Any smaller value of 3 makes the (stationary) window size almost deterministic when

p } 0 (when the average value of W becomes large).

In the next section we will draw some conclusions about the number of marked packets

in a flow per Round Trip Time (RTT).

5 The Number of Marked Packets per Round Trip

Time

If a flow has a marking probability of p per packet and a congestion window of W packets,
it will in average see pWW marked packets per Round Trip Time. In the situation of Section
4, when a flow has been in existence long enough to have reached stationarity, this gives

us the following results:

Theorem 3. In the situation of theorem 1 (8 = 1), when a flow is in existence for a

long time and the marking probability p is constant and close to zero, it has in average

13



about
p i-a(ci(l — a))i-= E[Z7-a] (5.1)
marked packets per Round Trip Time. The distribution of Z depends only on ¢; and on

a, not on p.

Theorem 4. in the situation of theorem 2 (8 < 1), when a flow is in existence for a
long time and the marking probability p is constant and close to zero, it has in average

about

P (c_l) o (5.2)

Ca
f—a—1
marked packets per Round Trip Time. We see that in both cases there is a factor p #==".

We see that it is highly desirable that

B—a<l. (5.3)

Namely, in that case, the number of marked packets per Round Trip Time will not go
to zero when p | 0, at least as long as the flow is allowed very large windows (as large
as the “response surfaces” permit). That way, the router can signal relatively subtle
changes in desired rates. When the number of marked packets per Round Trip Time falls
(significantly) below 1, it becomes hard or impossible for routers to signal a desired minor
change in congestion window. Classical TCP is an extreme case, with only in the order of
/P, i.e. much fewer than 1, “marked” packets per Round Trip Time (if the reader prefers

it, we can restate this as about one “marked” packet per p_;_, i.e. many, RTTs).

A sensible choice seems to be
B—a=1, (5.4)
and either

B=1,a=0, qE[Z] = = = 0(1) (5.5)

Ca

14



(E[Z] = é because a = 0) or

B<1l,a=8-1, 2 =0(1) (5.6)

C2
The O(1) in (5.5) and (5.6) probably should be chosen in the range .2 (in average one
marked packets per 5 RTTs) to 5 (in average 5 marked packets per RTT). Research on
the appropriate optimality criteria is desirable. It must be noted that in both cases above,

more generally as long as (5.4) holds, the response surface has the form

Cy cal—p

q(w) = —w, w(p) = — ——. (5.7)

€1 ¢ p
This “ideal” response surface will be seen in Section 8 to have an interesting and attractive

additional characteristic.

In the situations of (5.5) or (5.6), the source gets, when the marking probability is low
and stationarity has been achieved, a low but sufficient number (say % to 5) of marked
packets per Round Trip Time. This enables the routers to give adequate signals without

the need on the part of the source to make strong changes.

From the point of view of easy implementability, the first choices to be considered are

(B=1,a=0)and (8=0, a=—1).

It must be noted that the first option (8 = 1, a = 0) is what happens during slowstart
in classical TCP, and always in those versions of TCP that have the famous bug mentioned

in [12], page 977, but with different ¢; and c.

From the point of view of having “enough” marked packets to transmit detailed in-
formation, it is attractive to also consider the case 0 < 8 — a < 1. If a convenient
implementation can be designed that mimmicks such behavior without causing punitive

computational overhead, it becomes attractive to at least study such schemes.
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6 Relaxation Times

There are two other, related, criteria in choosing a feedback mechanism. We want a
feedback mechanism that, if p remains constant and once stationarity has been reached,
has fairly constant congestion windows. We also want a mechanism where if p changes
the congestion window quickly moves to the new equilibrium value. The two desires are

somewhat contradictory.

Large  and a cause very quick adjustments when p changes, but also relatively wild
swings while p is constant. Small 8 and a cause very “smooth” behavior while p is

constant, but make the system adapt relatively slowly to changing p.

We already saw that even if 3 is as low as 0, a router can reduce all windows to 1 (or
“less”: time—out) by setting p = 1 for ¢,~! Round Trip Time. This should be adequate in
all (?) circumstances. For larger values of 8 the downward adjustment in the congestion

window is more rigorous, but also reaction to randomly marked packets is wilder.

For upward adjustments in the congestion window it similarly seems desirable that

a > 0.

Together with the material in the previous section, this makes the choice
a=0,08=1 (6.1)

seem more and more desirable. Choices of ¢; and ¢y then must be used to take the
sharp edges off this behavior. (4.16) shows that in that case ¢y controls the coeflicient of
variation of the stationary distribution of the congestion window. A value ¢; = % or %

8 16

looks extremely plausible.

In addition there are implementation details that can be used to further smooth be-
havior without decreasing the rate of adjustment to changing circumstances, see Section

10. Section 8 will give another argument in favor of the choice (6.1).
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7 First estimating p

With more powerful endstations it is possible to have a more sophisticated algorithm. The
main proposal in this section is to first choose a response function ¢(.) and then explicitly
estimate p. The desired W is computed from the estimated p using (2.4). p could be

estimated using exponential smoothing, but there may be problems doing this: Let

0 if the k—th packet is unmarked
Zap(k) = (7.1)
1 if the k—th packet is marked

and let
Pe = (1 —7)Pp_y +rZap(k). (7.2)

be the estimate for p. (7.2) has the disadvantage that when the estimate p is small com-
pared with the smoothing parameter r, a single “zapped” (i.e. marked) packet increases
p far too much. It is desirable to let » depend on p, for example a well chosen positive
constant times p. However, this may lead to problems when p becomes extremely small.

A comprehensive solution seems to be:

Choose a minimal value for p. For example, choose a maximal acceptable value W4,
for the congestion window W (say the receive window). From the chosen response surface
q(.), compute p* such, that Wp., = W(p*). Now choose pm;» “appropriately small” (to
be defined) compared with p*. Choose a positive constant ¢z, 0 < ¢z < 1, for example

1 1

c3 = g or ;. Now, instead of (7.2) use

Pr, = maz ((1 — €3Pp_1)Pr—1 T C3Pp—_1Zap(k), pmin) : (7.3)

This way, when p is small, it takes in the order of (log(1 + c3))_1 (log base 2) marked
packets in relatively quick succession (much faster than probability p per packet) to double
the value of p.

17



Every time p has been re-computed, recompute W from
W = min (W(D), Wiaz) - (7.4)

Thus, as long as pmin < p < p*, W remains at W,,,.. When p increases above px, W
decreases below W,,,.. As long as p remains below p*, randomly marked packets do
not affect W. It seems to make sense to choose pni, = Z°. In that situation about

2

(log(1 + ¢s)) " marked packets in quick succession always start decreasing W.

8 Estimating p with the “Ideal” Response Function

In this section we choose the response function as in (5.7):
(W) =—, (8.1)

where ¢, = z—; ¢; and ¢y no longer have meaning by themselves. Window evolution is
done as in Section 7, with parameter c;. We replace (approximate) the response surface
by

W(p) = %. (8.2)

Next we analyze the evolution of W in the domain where W < W4z, px < p. In

other words, we always have

, D ( )
Since we have

1 —c3p. )P if Zap(k) =0,
7, — (1 — eaPr_1)Pr—1 | p(k) (8.4)

(14 c3 — caPp_1)Pe—1 if Zap(k) =1,

we also have
—cacs if Zap(k) =0,

Wi, — Wiy = 7Pk p(k) (8.5)

U Pet) yp i Zap(k) = 1,

© I+es(1-Pyq)
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Thus, we see that for px < p << 1 the evolution of W is as in Section 4 with

c3
C3+1 )

a=0,8=1, ¢ = czcq, and ¢c3 =

Since 8 =1, a =0, o =27 the desired number of marked packets per Round
Trip Time (once stationarity has been reached). For every marked packet, the congestion

Wl. If c3 = 1 every marked packet halves the window.

window is decreased from W to ey

A less draconic choice is ¢ = % or even ;5. There now are two trains of thought that can
be used to set ¢y or c3: the one based on how fast the estimate for p is changing when

there are marked packets, and the one based directly on how fast the congestion window

must change when packets are marked.

9 Router Behavior

This note does not study router behavior. It is however possible to make some relevant

observations that may be the start of a later serious study.

A router can estimate, for all its buffers, the number of active flows of class z that
are using that buffer. This can be done, for example, by the methods described in [3].
Let N; be the estimated number of active flows of class 1. If the router also knows that
all class ¢« flows are ECN-capable, and that all sources of class ¢ flows are using the
“c1, €2, a, B” policy (with ¢; etc of course depending on 1), it can for example set the

marking probability p(®) for class i packets in that buffer in the order of

pl) = 5. N, (9.1)

In (9.1) the constant ¢5 can depend on the buffer occupation etc. We again see that
the case B; — a; = 1 has a certain charm: the dependence of the probability p on the
estimated number N of flows is smoother than for TCP. A small error in the estimate N

has less serious consequences.
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The router can always drastically reduce congestion windows by setting p = 1 for a
significant fraction of a Round Trip Time. Since the router is marking, no packet loss
ensues. It is desirable to do this only if the router can predict the effect of markings: If
it does this “until the effect is noticeable”, most congestion windows have been reduced

to one MSS or less.

10 Implementation Issues

Making sure that a flow has at least a small handful of marked packets per Round Trip
Time, (say between % and 5), has the advantage that the congestion window can be
controlled more tightly than in a system where the flow has a marked packet only once
every many RTTs. It may have the disadvantage that the flow appears “jittery”: there
is a downward adjustment for every marked packet. There are many ways to get around

this. One of these is the following:

e When the number of outstanding (unacknowledged) bytes is larger than the current
congestion window, but less than the advertised window, the source still is allowed

to transmit 1 MSS for every 2 MSSs acknowledged.

e When the number of outstanding (unacknowledged) bytes is smaller than the cur-
rent congestion window (and therefore smaller than the advertised window), the
source can transmit at most two packets (at most one MSS each) for every packet

acknowledged.
Hence “locally in time” there is additive increase as well as additive decrease. Over slightly
larger timescales the congestion window is the actual constraint.

The “real” solution probably must combine ideas as above with ideas already being

discussed for TCP (such as larger starting congestion windows, etc.).

20



Multiplicative decrease (3 = 1) with small ¢, has the disadvantage that for small
congestion windows the decrease becomes small. It may be advisable (this needs study)

to decrease the congestion window (for every marked packet) by (for example)

1
min(caW, 5) MSS:s. (10.1)

If the choice 8 = 1, a = 0 is made, we saw that there are at least two ways to
implement the flow control: One as in Section 2, one as in Section 8. There may be
more ways of achieving the same goal. The two methods described are not quite identical
for larger values of p. More investigation is desirable on the relative performances of
these implementations. In particular, the implementation in Section 8 mimmics slowstart
in the situation where the congestion window is “much too small”, and thus may make

construction of a explicit initialization phase unnecessary.

11 Conclusions

In this paper we study mechanisms in the Internet where Routers give feedback about their
state of congestion to endstations (say sources) by ECN (Explicit Congestion Notification).
We argue that Router Behavior (e.g. whether and when to mark packets) and Source
Behavior (e.g. how to modify congestion windows in reaction to marked and unmarked
packets) must be designed together. We argue that the advent of ECN is an opportunity,
quite possibly the last opportunity, to modify the TCP feedback system (in the short
term: give different interpretations to “drop” and “mark”, and make the interpretation

of “mark” dependent on the type of IP packet).

We discuss the general TCP Paradigm, where there are general incr(.) and decr(.)
functions. We then restrict our attention to a smaller class of such schemes, where

iner(w) = c;w® and decr(w) = cow®. For these functions we predict source behavior,
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including the stationary behavior of congestion window sizes, as function of the marking

probability p.

Based on the number of marked packets per Round Trip Time we recommend §—a <
1, and based on implementability we recommend, at least for the time being, 8 — a = 1.
We show that there is an alternative way of thinking about congestion window evolution,
with a corresponding different implementation outside the “TCP Paradigm”, that at least
for small marking probabilities has the same effect as the TCP Paradigm with 8 = 1,
a = 0. The two ways of thinking about (essentially) the same scheme make it possible to

come to a more systematic way of setting parameter values.

While 8 = 1, o = 0 i1s the current favorite, other parameter values must not be
discarded. In fact, there is an interesting question on what the appropriate objective to

be optimized really is.

Acknowledgement. I thank Christian Huitema for suggesting to differentiate be-
tween In-Rate and Out—of-Rate packets.

A The Ornstein — Uhlenbeck Approximation

In the situation of Theorem 2,

W, + e W,* with probability p,
Wn+1 — (A]_)
W, — caW,,? with probability 1 — p,
with a < 8 <1, ¢; >0, ¢ > 0. For the process
” ca(l—p a
X(t) = p (WL%J - (M) ) , (4.2
P Czp
we therefore have:
1

—E[X({t+p?) - X@)IX(E) =2l =p" " (Wt 11 - W ) =
pz p”2 p72

22



pul—l'z <(1 _ p)clw%J - pCZWLﬂ%J) -

We guess that

_1

pe| << (M) . (A3)

Ca2p

and do binomial expansions of the inner expressions. This gives

%E[X(t 1) - X(1)X(t) = 2] ~

a a—1

o {(1 ] e BERCE ) C A

Cap

_pes (M) T el (M) p}
Cap Cap

The highest—order terms drop out and we get

%E[X(t 1 97) — X()|X(8) = 2] ~

[

—a l—a

ol — )y ey R (1 - p) R

We see that to get a “useful” (Ornstein-Uhlenbeck type) result for p | 0 we need

l—«o

B—a

Vg = (A4)
Repeating the process for second moments we see that the Ornstein-Uhlenbeck result

holds as long as in addition to (A.4) also

148
2(8—a)

VvV =

(A.5)
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With (A.4) this yields the condition (4.19).

Since a < 3, for p small downward jumps in the process X(.) are (much) larger than
upward jumps. By first approximation, the quotient of downward jump sizes and standard

deviation of X(.) is

Jum __1-p8 1—a B8 1-8
(St.Der> = /2(8 — a)e;” 4T ¢ 75T (1 — p) P pT=, (A.6)

which shows that for p | 0 the paths of the process X(.) become continuous. The smaller

the expression in (A.6), the more “almost continuous” the paths of the process X(.).

It must be noted that since in Theorem 2 a < 8 < 1, and hence

l—a
8 —a

the speed-up of the process X(t) compared with the process W, is higher in theorem 2

> 1, (A.7)

Vg =

than in theorem 1.

The “guess” (A.3) is proven to be correct by the same idea as used in (A.6):

Cap Ca

2| = O(st.dev(X)) = O(1) << p* (M) e <M> ’ﬁp—z&a‘-‘i) .
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