
1

The Window Distribution of Idealized TCP
Congestion Avoidance with Variable Packet Loss

Archan Misra Teunis J Ott
archan@bellcore.com tjo@bellcore.com

Bell Communications Research
445 South Street

Morristown, NJ 07960

Abstract—This paper analyzes the stationary behavior of the TCP con-
gestion window performing ideal congestion avoidance when the packet loss
probability is not constant, but varies as a function of the window size. By
neglecting the detailed window behavior during fast recovery, we are able
to derive a Markov process that is then approximated by a continuous-time,
continuous state-space process. The stationary distribution of this process
is analyzed and derived numerically and then extrapolated to obtain the
stationary distribution of the TCP window. This numerical analysis enables
us to predict the behavior of the TCP congestion window when interact-
ing with a router port performing Early Random Drop (or Random Early
Detection) where the loss probability varies with the queue occupancy.

Keywords—TCP, distribution, variable, loss.

I. INTRODUCTION

In this paper, we present a quantitative analysis of the sta-
tionary behavior of the evolution of the TCP congestion window
(�������) ([1]) when the packet loss probability is variable and
depends on the (instantaneous) window of the TCP connection.
It can, thus, be viewed as a generalization of the analysis in ([2])
where the drop probability was assumed constant. The mathe-
matical model abstracts TCP behavior into a continuous cycle
of “congestion avoidance”, packet loss and “fast recovery”. We
disregard the details of fast recovery ([7]) of TCP and assume an
idealized behavior, whereby a packet loss that occurs when the
congestion window is � MSSs instantaneously reduces the con-
gestion window (and the number of unacknowledged packets) to�	�

2
 MSSs. The dynamics of window evolution can then be cap-
tured by a discrete-time Markov process with state-dependent
conditional transition probabilities.

Mathematically speaking, we consider the stochastic process�� �������� 1, where
� � stands for the congestion window just after

the ����� good acknowledgement packet (one that advances the left
marker of TCP’s sliding window) has arrived at the source. By
disregarding time-outs and the behavior during fast recovery, this
is a discrete-time Markov process with the following behavior:

��� � ��� 1 � ��� 1��� � � � �! � 1 "$# � � � (1.1)

�%� � ��� 1 � �
2 �
� � � �& � # � � �	' (1.2)

where # � � � is the packet loss probability when the congestion
window is � .(The time index � in the above equations is referred
to as ack time in this paper, since it increases only with the
receipt of acknowledgements.) Let the maximum value of this

This research was partially supported by NSF Grant NCR-9415552, in
subcontract with the Pittsburgh Supercomputing Center.

loss probability, over all values of � , be denoted by #)(+*�, (hence#-(.*�,0/ 1). Our Markovian formulation holds when, given the
current window size, packet losses are conditionally independent
of past and future losses. As in ([2]), we will approximate this
process by a more amenable continuous-space continuous-time
process.

In ([2]), which assumed a constant loss probability # , the time
axis was rescaled by a linear contraction with scale # , and space
was rescaled by a linear contraction with scale 1 # , resulting in an
effective rescaling given by

�2��3 � � 1 # �54768:9 . (The time index
generated by the rescaling is called subjective time in this paper.)
The resulting analysis derived the well-known ‘square-root’ be-
havior of TCP ([2],[9]): the average window of a persistent TCP
connection is of the order of 1; < . We shall also engage in sim-
ilar rescalings in this paper. While our space rescaling is still
linear, the variable loss probability of our model requires the
time rescaling to be non-linear, as explained in Section 2. The
window evolution of this re-scaled process will be described
by a differential equation (between events of packet loss); the
intervals between these packet loss events will be shown to be in-
dependent and exponentially distributed random variables. This
differential equation is then solved via numerical analysis; the
stationary distributionof the TCP congestion window is approx-
imated from this continuous process by appropriate corrections
for the rescaling.

We verified the accuracy of our analysis by comparing our
predictions with simulations which involved popular TCP ver-
sions (NewReno and Reno) and where packets were randomly
dropped with a state-dependent loss probability. We also applied
this model to predict the window distributionof a persistent TCP
connection that interacts with a router port, which handles this
single flow and performs Early Random Drop (ERD) ([10])). In
an ERD port, the drop probability is a function of the instanta-
neous buffer occupancy (which we related to the instantaneous
congestion window); we observed very good agreement between
simulations results and analytical predictions. We also investi-
gated the applicability of this model when the router port per-
formed Random Early Detection (RED) ([11]), so that the loss
probability is a function of the average queue length. Although
our memoryless state-dependent Markovian loss model does not
accurately reflect the complicated effect of queue averaging in
RED, ([11]), surprisingly good predictions were obtained.

The paper is organized as follows. In section 2, we model
the Markov process characterizing the TCP behavior and ap-
proximate its dynamics by an appropriate continuous-time,

2

continuous-valued process. In section 3, we derive the Kol-
mogorov differential equation governing the stationary behavior
of the generalized process and present a numerical solution to
this differential equation. In section 4, we provide numerical
examples analyzing the window behavior of TCP with Early
Random Drop and Random Early Detection queues and evaluate
the effectiveness of our numerical techniques in predicting TCP
behavior.

A. Related Work and Model Applicability

There has been a fairly large body of literature analyzing TCP
window dynamics with constant drop probabilities. The square-
root formula, which ignores the effects of TCP timeouts and fast
recovery, has been rigorously derived in [2] and has also been
separately reported through simpler analyses in [6] and [5] (the
last publication also considers modifications to the formula re-
sulting from losses of acknowledgement packets). Ott [8] stated
that the throughput of persistent TCP (but not necessarily the
congestion window) starts behaving like 1< , when timeouts be-
come significant. The recent work by Padhye et al [3] provides a
better estimate of throughput (especially at larger loss probabil-
ities) by considering the effects of fast recovery and timeouts in
greater detail; they also asserted the 1< dependence when time-
outs become significant. Kumar [4]) has presented an elaborate
analysis of the performance of different TCP versions by consid-
ering the fast recovery and timeout dynamics of each version in
great detail. All these papers, however, assume a constant drop
probability # ; our paper differs from these approaches in that it
considers the case where the loss probability varies as a function
of the window size.

We would also like to add a few words about the range of
loss probabilities over which our analysis applies. Both [3] and
[4] have noted the importance of timeouts in analyzing the per-
formance of TCP versions like Tahoe, Reno and New Reno;
our model, on the other hand, does not consider timeouts at all.
Our analysis is accurate for such TCP versions only when loss
probabilities are small enough and the delay-bandwidth product
(including the buffering delay) high enough (approx. 10 and
above) to ensure that timeouts are relatively rare events. The
disproportionate impact of timeouts on TCP performance is due
to the combined effects of coarse-grained timers and the inte-
gration of loss recovery mechanisms with congestion control in
current TCP versions. When loss recovery is separated from
adaptation to congestion (as in SACK TCP), timeouts begin to
play a relatively less important role and the range of loss proba-
bilities over which our analysis holds increases. As newer TCP
implementations like SACK TCP and random drop mechanisms
like RED become widespread in the Internet, our assumptions
will become less restrictive.

II. MODEL DESCRIPTION

The TCP connection is assumed to send a large data file in
the forward direction with the congestion window acting as the
only constraint on the transmission of packets. It is assumed
that the connection never goes into timeout, that the receive
or advertized window never limits the number of unacknowl-
edged packets, that data is always sent in equal-sized segments
(one MSS) and that acknowledgements are never lost. The re-

ceiver generates an acknowledgement for every received packet
(we shall also extend the analysis to model the phenomenon of
delayed acknowledgements). Packet losses are assumed to be
conditionally independent.

The stochastic process described by the conditional probabil-
ities in equations (1.1) & (1.2) applies to TCP only if the time
index corresponds to the arrival of good acks. This time, which
we shall call ack time in the rest of the paper, is a positive-integer
valued variable that increments by 1 whenever a good acknowl-
edgement packet arrives at the source; it increases linearly with
clock time only when the window size and round trip times are
both constant. Let the cumulative probability stationary distri-
bution for this process under this ack time be

� *���� .

A. Time and State-space Rescaling

To derive a more amenable continuous-time continuous-
valued random process from the process described by equations
(1.1) & (1.2), we rescale both the time and state-space axes. This
leads us to introduce the concept of subjective time, which is,
roughly speaking, related to ack time through an invertible map-
ping. For the case considered in [2], where the loss probability
was a constant # , the subjective time was derived from ack time
by linearly compressing the time scale by a factor # , by using
the relation � 3����
	��� � ����� � # ' � 3 *���� . When the loss probability is
not constant but state-dependent, a state-dependent (non-linear)
scaling must be used.

We now present a generalized notion of subjective time by
considering a continuous time stochastic process, � ��3 � with a
state-dependent failure rate � ��� � . We can now derive another
process � ��� � from � ��3 � such that an increase of � 3 in the time
index

3
of � � 3 � corresponds to an increment of � � � ��3 � � � 3 in

the time index
�

of � ��� � . A realization of the process � will
thus assume the same state-space values as the corresponding
realization of � but at different instants of time. Subjective time
can also be though of as a history-and-state dependent rescaling
of the base (ack) time index1. The importance of the process
� ��� � lies in the fact that � ��� � will now have a constant failure
rate in its own notion of time (proved in Appendix I). The time
index,

�
, of the process � ��� � is then known as subjective time

in reference to the time index
3

of the process � ��3 � and the two
are related by the differential relation

� � � � � � � 3 � � � 3 (2.1)

Subjective time can also be considered to be a variable stretching
(or contraction) of the time index.

For the specific TCP process under consideration, our quan-
tized increment in subjective time

3
is provided by the mapping

∆
3 � # �� ��� ∆ � (2.2)

where ∆
3

is the (real-valued) increment in subjective time, ∆ �
is the (integer-valued) increment in ack time and # � � � � is the
loss probability associated with the value of the window

� � at
ack time � . In other words, for a process defined under this

1Readers familiar with Weighted Fair Queuing (WFQ) ([12]) may benefit from
realizing that our subjective time formulation is analogous to that the definition
of virtual time in WFQ; both attempt a state-dependent rescaling of time so that
the process of interest has an invariant behavior in the new time scale.

3

subjective time, time advances at a variable rate, as an increase
in the ack time index of 1 corresponds to a state-dependent
increase of # �� � � in the subjective time index. Thus,

3�� � � , the
subjective time immediately after sending packet number

�
, is

expressed as
3�� � � � ���� � 1 # �� � � . As 0 / # � � ��� / 1,

3
is a

real-valued sequence obtained by a contraction of the ack time
index. As # (+*�,�� 0, the limiting subjective time index becomes
a continuousvariable. We shall see that, for this specific case, the
process defined in subjective time has a failure rate that becomes
Poisson and constant only asymptotically, as # (.*�,�� 0.

If
��� ��3 � represents the process

� � in subjective time
3

via
the transformation in equation (2.2), its sample path between
the events of packet failure can be modeled by the difference
equation

∆
���
∆
3 � 1

�� � � � � (2.3)

As #�(+*�, � 0, the difference equation can be modeled by a cor-
responding differential equation with increasing accuracy. The
differential equation would however, in the limit, be ill-behaved
as the derivative goes to 	 as # (.*�, � 0. To obtain a well be-
haved process, we also need to rescale the state space of

�
� ��3 � .
To rescale properly, we assume that

<�����<������������ � 2, (i.e.,
the ratio between the minimum and maximum loss probabili-
ties is uniformly bounded away from 0). If we then rescale the
state-space of the process

� � ��3 � by the multiplicative constant1 # (.*�, , the resulting process, which we call
�2��3 � , obeys the

functional relationship

�2� 3 � � 1 #-(.*�, � � (2.4)

��� �"!��.� � � ��3 � �$# !"%�& # ��' :

�
(
� � 0

� � � � / 3

This continuous-time and continuous valued process
�2� 3 � will

be the subject of our study and analysis for the rest of the paper.
Equation (2.2) implies that a loss probability of zero (# � � � � �

0) results in an increase in ack time but no increase in subjective
time. Subjective time thus loses information about the process
behavior during those ack times when the system evolves de-
terministically without loss; the mapping in equation (2.2) is
non-invertible if # �� ��� is 0. Later in the paper, we shall see
how to correct the stationary distribution of the process for por-
tions of the state-space where the loss probability is 0; for the
time being, assume that # �� � �*)� 0 in the region of interest.

Proposition 1
We see that as # (+*�, � 0, the process defined by equations
(1.1),(1.2) & (2.4), converges (path-wise) to a process whose
window,

�2� 3 � , behaves as follows:
There is a Poisson process with intensity 1, the points of which
are denoted by

��� � ������ 1. In between the points of this Poisson

2The above requirement may, in several cases, be more stringent than practi-
cally necessary. For example, when the variation of loss probabilitywith window
size is very gradual, the bulk of the distribution mass will often lie around some
small value of p, say +-, . We can then use . + , as our space-rescaling factor;

for the rescaled process to be well-behaved, we then merely need /103254/16 to be

bounded away from 0.

process, the window,
�

, evolves according to the equation

� �
� 3 � #-(.*�,

� ; < ����� � � (2.5)

At the points of the realization of the Poisson process, we
have

�2��� � � � 1
2

�2����7 � .
Proof:
The proof of the differential equation describing the window
evolution between failure events is trivial and obtained by tak-
ing appropriate limits in equations (1.1), (2.2) & (2.3). The
relationship at an instant of failure also follows easily from
equations (1.2) and (2.3). Note that the derivative in equation
(2.5) is always well-defined by virtue of our assumption that# � � � � � 0 for the interval under consideration. The proof
that the instants of failure become a realization of a Poisson
process of intensity 1 is provided in Appendix I. It consists
of showing that as #�(.*�, � 0, the number of packet transmis-
sion events in any finite interval 8 becomes infinitely large and
the probability of loss of each transmitted packet is such that� !�9�: � ��9<;=9�>"><? � # �@? � 3 �"!�A # ; 8 � � � 7 B .

The process defined in Proposition 1 is an approximation of
the re-scaled ‘TCP’ process; the approximation becomes asymp-
totically accurate as the loss probabilities become smaller. For
a given loss probability function # �� � , we analyze the rescaled
‘TCP’ process by assuming that it exhibits the behavior of the
limiting process outlined by Proposition 1. In other words, even
for a finite loss probability, we assume that

�2��3 � is described
by the differential equation (2.5), with an i.i.d and exponential
distribution of times between packet drops. We can thus expect
the numerical analysis outlined later to predict TCP window
behavior more accurately as # (+* , becomes smaller.

B. Distribution in (Continuous) Ack Time

We shall see how to compute
� ���
	��7� � � , the stationary cumu-

lative distribution of
�2� 3 � in subjective time, later in section

III. We now consider how to correct this distribution for the
state-space and time rescalings, introduced in equation (2.4),
assuming

� ���
	��7� � � is already known.
The state-space scaling results in a simple linear transfor-

mation of the probability distribution.
� ���
	�� � � � is corrected

first to obtain
� � � � � , the cumulative stationary distribution in

subjective time but without space-rescaling by the relationship� � � � � � � ���
	�� � 1 # (+*�, � � .
Our desired distribution

� *���� � � � can then be obtained by not-
ing that the state-dependent rescaling of subjective time (in equa-
tion (2.2)) introduces a sampling non-uniformity in the process�2��3 � . To see this non-uniformity, note that an acknowledge-
ment arriving when the window is � occupies an interval of 1 in
ack time but corresponds to an interval # � � � in subjective time:
a uniformly distributed sampling on the subjective time axis
corresponds to a non-uniform sampling (with non-uniformity
proportional to # � � �) in the ack time frame.

The sampling non-uniformitydue to time-scaling is corrected,
to obtain

� *���� � � � , by dividing the probability density in sub-
jective time, � � � � � � , by the appropriate quantity # � � � . This is

4

achieved by the transformation

� � * ��� � � � �
��������� �<���� �� ����� ��	 �< ��	 � (2.6)

C. A Generalized Process

The analysis used to derive the stationary distributionof
�2� 3 �

is applicable to a more general class of processes. For example,
any arbitrary process with a state-dependent failure rate can be
reduced to a process with a constant Poisson failure rate by
moving to an appropriate subjective time. Thus, we do not lose
generality by considering only processes with constant failure
rates.

Consider a general process
�2��3 � , described by the differential

equation � �
� 3 � 1
 � � � (2.7)

in between the instants of failure of a Poisson process with rate � ;
let
 be a well-behaved function (finitely many discontinuities)
such that
 � � � � 0 � � . At the instants of failure of the Poisson
process, the process evolution is given by

�2��3 � � ��� ��2��3 7 � � ,
where � � � � : 0 � 	 ��� 0 � 	 � is a strictly increasing function
of � such that � � � ��� � � � � � 0 � � � 0 � � 0. Since A is strictly
increasing, it has an inverse function # � � � , such that # � � � � � � �� and # � � � � � � � � � 0. The analysis presented later can be
easily extended to consider this whole class of processes.

For the TCP-specific case at hand, we have � � � � � 1
2
� (so

that # ��� � � 2
�

), the intensity � of the Poisson process is 1 and

the rate function
 �� � �
< ���� 8 ��� � � < ����� .

In the next section, we shall formulate and solve the Kol-
mogorov equation for this generalized process. Our numerical
examples will, however, solely deal with the TCP-specific pro-
cess for simplicity.

III. THE STATIONARY KOLMOGOROV EQUATION AND ITS

SOLUTION

In this section we obtain the stationary distribution of the
process, defined in section II, whose behavior is described by the
equation

� � � �� � � 1� �3 � � �=� in between the points of a Poisson
process of rate � . At the points of the Poisson process,

�2��3 �
is obtained by

�2� 3 � � ��� � �2��3 7 ��� ; let # ��� � be the inverse
function of � ��� � .
Proposition 2
The stationary cumulative distribution

� ���
	��7��� � of the pro-
cess in section II.C satisfies the differential equation

� � ���
	�� ��� �� � � �
 ��� � � � ���
	�� � # ��� � � " � ���
	�� ��� � � (3.1)

Proof:
If

� ���
	�� ��� � 3 � is the cumulative distribution function at (subjec-
tive) time

3
, then the distributions at times

3
and

3 � ∆
3

can be
related as � ���
	�� ��� � ∆

3
 ��� � � 3 � ∆
3 � �

� ���
	�� ��� � 3 � � � ∆
3�� � ���
	�� � # ��� � � " � ���
	�� ��� � �

The first term in the RHS of the above equation asserts that the
process cannot increase by more than ∆ �� � , � in an interval of time
∆
3

while the second term considers the probability of loss events
that would cause the process value to reduce below

�
at time3 � ∆

3
. Since the stationary distribution

� ���
	�� ��� � is invariant in3
, we get the resulting differential equation

� � ���
	�� ��� �� � � �
 ��� � � � ���
	�� � # ��� � � " � ���
	�� ��� � � (3.2)

We were unable to obtain a closed form analytical solution
for this differential equation. We however provide an open-form
analytical expression for

� ���
	�� ��� � that translates into a rapidly
converging numerical technique for evaluating the cumulative
distribution. In passing, we note that the approximation of the
TCP process results in the differential equation

� � ���
	��:��� �� � �
 ��� � � � ���
	��7�
2
� � " � ���
	��7��� � � (3.3)

which will be used in the numerical tests to be presented later.

A. Solution of the Equation

Let � be the complementary distribution function defined by
the relation � ��� � � 1 " � ���
	�� ��� � . Equation (3.1) is equivalent
to the equation

� � ��� �� � � �
 ��� � � ��� � � �
 ��� � � � # ��� � � (3.4)

with the boundary conditions � � 0 � � 1, � � 	 � � 0. Let� ��� � � � ,0 �
 ��� � � � and define � ��� � ��� ��� � � 7�� � , � where� ��� � is an arbitrary function (to be evaluated). � ��� � is then
seen to obey the differential equation

� ��� � � � �"! � " �$#&%,
 �"� � � � � � � � � # �"� � � � � (3.5)

Now, suppose that lim ,(' � � ��� � exists and is equal to ¯� . ¯� will
exist only if the tail of the complementary distribution decays as� 7�� � , � . By evaluating the behavior of equation (3.4) for very
large x (where � � # ��� ��� can be considered to be 0 with negligible
error), we can easily see that this phenomenon of exponential
decay is indeed true. Now, by letting

!*) 	 in equation (3.5)
and noting that � � # �"� � � � � 7�� � * � � �=� � � # �"� � � , we have

� ��� � � ¯� " � # �,
 �"� � � � � � � � 7�� � * � � �=�=� � � # �"� � � � � (3.6)

with the boundary conditions � � 0 � � 1 and � � 	 � � ¯� .
By defining + �"� � as + ��� � � �
 �"� � � � � � � 7�� � * � � �=� �

�
 �"� � � 7 � ��, -/.- � �10 �2��0
, equation (3.6) reduces to

� ��� � � ¯� " # �, + ��� � � � # �"� � � � � (3.7)

By iterated expansion, � ��� � can be shown to obey the relation

� ��� � � ¯� �(
� � 0

� " 1 � �
� 743(576 �8 9;: <# �

1 = , ':' ' # �?> =A@ �?>CB 1

5

+ �"� 1 ��' ':' + �"� � � � � � ':':' � � 1 (3.8)

Appendix III provides a proof that the above infinite sum indeed
converges to a limit when the function
 ��� � is non-decreasing in�

; this condition holds for the TCP process whenever the drop
probability is a non-decreasing function of the window size.

B. Numerical Computation

Repeated substitution in equation (3.7) offers a numerical
technique for evaluating � ��� � . As � ��� � tends to a limit as�) 	 , it can be treated as a constant beyond a certain value� � < < � (chosen such that the resulting error in computing � ��� �
is at most a small value �). We can then obtain an approxima-
tion for � ��� � by setting the value of � ��� � beyond

� � <	< � to
be a constant and computing � ��� � between

�
0 � � � < < � � . After

the algorithm converges, we can divide by � � 0 � to satisfy the
boundary conditions � � 0 � � 1 � � � 	 � � ¯� .

The complete numerical procedure for computing
� ���
	�� ��� � is

as follows:
1. Choose a small positive constant � (�<� 0), which indicates

the accuracy of the computation.
2. Find

� � < < � such that
� �, - 8 8���� + �"� � � � / � .

3. Let
�

0
��� � � 1 for all

�
and let

� � ��� � � 1 � � � �� � <	< � � � ? '
4. Also compute � ��� � � � �, + �"� � � � for � ��� � <	< � � /� / � � <	< � . Denote � � � ��� � <	< � ��� by � .
5. For all values of ? , let

� � ��� � � 1 "�� ��� � � for � ��� � < < � � /� / � � <	< � .
6. Repeat the following iteration in the range

�
0 � � ��� � <	< � � �

until the function converges below a specified bound:

� � ��� � � 1 " # 	 � , - 8 8���� �
, + �"� � � � 7 1

��
 � � � � "�� '
7. Let the final solution be denoted by

� ��� � .
8. Renormalize

� ��� � ��
� , �

�
0
� to satisfy the necessary bound-

ary conditions.
� ��� � is then the numerical estimate for� ��� � .

9. The complementary probability distribution is then ob-
tained as � ��� � � � ��� � � 7 � � , � (3.9)

10. Compute
� ���
	��7��� � from

� ���
	�� ��� � � 1 " � ��� � .
C. Correcting for Lossless Evolution

As noted in section II.A, the rescaled TCP process in subjec-
tive time cannot capture the dynamics of the window evolution
when the loss probability is 0 (as subjective time freezes during
these epochs). From a sample path point of view, the infinite
derivative in equation (2.5) (Proposition 1) and the zero time
increment in equation (2.2) imply that whenever the TCP pro-
cess (in subjective time) enters an interval in the state-space
corresponding to 0 loss, it instantaneously jumps from the lower
to the upper end of the interval. In this subsection, we show
how

� * ��� ��� � for the TCP process, obtained from the mapping
in equation (2.6), can be corrected to incorporate the dynamics
of the lossless evolution; the corresponding correction for the
generalized process is then straightforward.

The correction for the density �7*���� ��� � in ack time (after the
correction for state-space rescaling has been completed) is com-
puted by the level crossing principle which equates the rate at
which the process evolves to the right of a value

�
to the rate at

which the process transitions to the left. For the TCP process,
this results in the equality

�:*���� ��� � 1� � # 2 ,
, # �"� � � � *���� �"� �	' (3.10)

This follows by noting that at a point
�

, TCP evolves to the right
at a rate 1, while it moves to the left at the rate governed by the
loss rate in the interval

��� � 2 � � . By first obtaining the values of� *���� ��� � (upto a scaling constant) in the regions with non-zero
loss probability, we can correct the solution for regions with zero
loss probability using the equation (3.10)3. (If

� * ��� �"� � in the
RHS of equation (3.10) is unknown for any

�
, it follows that# ��� � � 0 also; the unknown region may thus be left out of the

computation.)
The numerical recipe for correcting the distribution for the

lossless region is.
1. For the region(s) where # ��� � � 0, compute the density
�:*���� ��� � using the level crossing relation

�:*���� ��� � � � # 2 ,
, # �"� � �:* ��� �"� � � � (3.11)

2. Renormalize � *���� ��� � by
� �:*���� �"� � � � over the entire state-

space to ensure a well formed probability distribution func-
tion � *���� ��� � .

IV. SIMULATIONS AND RESULTS

We now present numerical examples to compare our analyti-
cal results with those obtained via simulations. The simulations
were carried out with the TCP Reno and NewReno versions in the
ns simulator package. Although these versions differ in their fast
recovery mechanisms and in the frequency of timeouts, the per-
formance of the two versions was found to be almost identical for
the relatively low loss environments studied in our simulations.
To obtain adequate statistical confidence, simulation results were
obtained by averaging over runs with multiple seeds; each run
comprised at least 106 packet transmissions. While the entire
simulation process would take � 10 " 15 minutes, the numerical
computation over a fairly fine grid (� 1000 points) took only
about 30 secs (on a typical workstation).

A. TCP with Simple State-Dependent Loss

The results in Fig.1 correspond to the case when the packet
drop probability depends directly on the window size. We

3The level-crossing equation (3.10) is actually valid for the entire range of
the TCP process state-space (and not just where +������ is 0). It can easily be
seen that the equation (3.3) (in subjective time) is equivalent to equation (3.10)
(in ack time) by noting that the following set of relations: +��������������� !�����#"$&% ���('������ ;)����* +�����,".-#/ 0 � 021 4/1021 4 ; �('3�����4"5� '7698�: � . +<; � 1 ��� ; and)='������,"
. + ; � 1) '7698>: � . + ; � 1 ��� , where

$
is a normalizing constant. The elaborate

rescalings and computations in subjective time in this paper are necessarysimply
because there does not appear to be a simple way of solving equation (3.10)
directly over the entire state space! Another way of looking at the subjective
time formulation is therefore to think of it merely as a change of measure that
replaces equation (3.10) with the more tractable version in equation (3.3).

6

achieve this effect by passing a TCP connection through a sin-
gle queue with negligible link propagation and transmission de-
lay (all outstanding packets are thus effectively resident in the
queue), and independently dropping each arriving packet with
a probability that varies with the queue occupancy. The drop
probability in this example increases linearly with queue occu-
pancy. It can be seen that the simulated behavior offers excellent
agreement with the numerical prediction in this example. For
comparison purposes, we include the distribution predicted by
the ‘square-root formula’ in ([2]) assuming a constant drop prob-
ability; the constant value of the drop probability was taken to
be the drop probability corresponding to the mean TCP window
size obtained via simulation. As expected, the ‘square-root’ ap-
proximation predicts a much larger variation in the window size
than the true distribution.

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70

 C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(C

D
F

)

 Segments

 Stationary Distribution of TCP Window in Ack Time

 p_max=0.02, B*RTT~=0,
 min_th=20, max_th=275

State-dependent Loss (Simulation)
State Dependent Loss (Theory)

SqRoot Formula

Figure 1: TCP Window Evolution and State-Dependent Loss

B. Predicting TCP behavior with Queue Management Tech-
niques

One of the goals of our analysis is to predict the window dis-
tribution of a persistent TCP flow when it interacts with router
queue management mechanisms like Early Random Drop (ERD)
and Random Early Detection (RED), where the packet drop
probability is not constant but varies with the queue occupancy.
In the present paper, we only model the simple case where the
persistent TCP connection is the only flow through the router
port; we are currently investigating extensions to multiple TCP
flows. While both ERD and RED involve variable drop probabil-
ities that depend on the queue occupancy, they have significant
differences (discussed in Appendix II), of which the two most
important are:� The drop probability in RED is a function of the moving-

averaged queue occupancy while the drop probability in
ERD is a function of the instantaneous queue length.� Even if he queue occupancy remains constant, RED in-
creases the drop probability for every accepted packet
(which we call drop biasing) resulting in inter-drop gaps
that are uniformly generated; ERD drops each packet with
the same drop probability, resulting in inter-drop gaps that
are geometrically distributed.

These differences make RED much harder to model than ERD:
the use of averaged queue occupancies to determine drop prob-

abilities destroys the state-dependent loss model (the drop prob-
ability is then a function of the past state behavior) while the
drop biasing functionality negates the independent packet drop
assumption. We circumvent these problem by (simplistically)
assuming that the drop probability depends only on the instan-
taneous queue length and that each packet is dropped indepen-
dently. We thus ignore the effect of queue averaging in RED;
we shall however present a simple correction to account for the
effect of drop biasing.

B.1 Relating the Loss Probability to Queue Occupancy

As already stated, we assume that the loss probability is deter-
mined by the instantaneous queue occupancy (for both RED and
ERD); the loss probability for a given TCP window is derived
by relating the queue occupancy to the TCP window. Neglect-
ing the periods of fast recovery, the number of unacknowledged
packets in flight, when the window is

� � , equals
� � ��� , or in an

approximate sense,
� � . If

�
(pkts/sec) is the service rate of the

(bottleneck) queue and the round-trip delay (ignoring the queu-
ing delay) is � 8<8 (sec), then

� ' � 8<8 packets are necessary to
fill the transmission pipe. Assuming that this pipe is always full4,
the occupancy of the queue is given by the residual number of
unacknowledged packets, so that we have� � � � � " � ' � 8<8 (4.1)

For our experiments, the loss function is given by the tradi-
tional model of RED behavior, i.e., # � � � � 0 for

� / &�? � � � ,# � � � � #-(.*�, for
��� & # � ��� and # � � � � � 7 (� � 6��(.*�, 6�� 7 (� � 6�� #-(.*�,

for &@? � ��� � � � & # � ��� . The loss probability as a function of
the window size is then given by # �� " � ' � 8<8 � 5.

While the above model cannot capture the queue averaging
function of RED, we can make a simple correction to approxi-
mate the effect of drop biasing in our model. We note that for
a given value of drop probability # , the uniform distribution of
inter-drop gaps in RED implies that the average gap is 1

2
< ; the

geometric distribution of gaps (resulting from an independent
loss model) implies an average gap of 1< . For the RED simula-
tions, we accordingly modify our analytical drop function such
that our average agrees with that of RED, i.e., for a given queue
occupancy
 , we make #�(5 � 6 �
 � � 2# � � �
 � .
B.2 Experimental Results

Illustrative results of our validation experiments are provided
in figures 2 and 3, which plot the numerically predicted cumula-
tive distribution of the TCP window against that obtained from
simulations. Figure 2 shows that our numerical analysis provides
an excellent match with simulation when the queue implements
the ERD algorithm. The distribution predicted by the square-
root formula is also provided for comparison. Figure 3 consists
of two graphs, the top one for a RED queue with

� ' � 8<8
	 0

4This assumption holds only if the buffer never underflows (which, in turn,
can hold only if the time taken by the buffer to drain �������� packets is longer
than ����� .

5The reader will note that the ack arriving at the source at time � (when the
window is ���) corresponds to a packet generateda round-trip time earlier when
the window was � ��� ; the loss probability of the packet acked at � should thus
be +���� ��� � . However, as �! "� � increases by a maximum of 1 segment in a
round-trip time � ����# ��� , so that the loss probability of the packet acked at� can be assumed to be +������ � with negligible error.

7

and the bottom one with
� ' � 8<8 � 5. The top graph isolates

the effect of approximating the RED averaging process from
the performance obtained when this approximation is combined
with the assumption of a full pipe (equation (4.1)). The two
graphs show, somewhat surprisingly, that the numerical predic-
tions (with the correction for drop biasing) provide fairly close
agreement with the simulated distribution when the queue im-
plements RED. The closeness of the fit is somewhat unexpected
since the averaging effect in RED queues typically last over 500
packets; we expected this memory to significantly degrade the
accuracy of our modeling.

C. Incorporating Delayed Acknowledgements

Our model of TCP window evolution has so far assumed that
TCP receivers generate an acknowledgement for every arriving
packet. Many implementations, however, use delayed acknowl-
edgements to slow the rate of window expansion or alleviate
congestion on the reverse link. We can model this artifact by
noting that if the receiver sends one ack for every � packets
received, then the TCP window grows from

�
to
� � 1 for

every � packets transmitted. An approximation to this behavior
is achieved by supposing that the TCP window grows by only
1
� � ��� of its value for every packet transmitted i.e. by modifying

the window evolution equation to
� ��� 1 � � � � 1��� �� .

Numerical results verify the effectiveness of this correction in
accounting for the phenomenon of delayed acknowledegments.
The graphs in figure 3 contain the comparisons between analy-
sis and simulations when a TCP connection performing delayed
acknowledgements is combined with the RED queue manage-
ment algorithm while figure 4 shows the comparisons when a
TCP performing delayed acknowledgements interacts with the
ERD queue management algorithm. For the ERD queue, we
also provide the theoretical distribution obtained by applying
the correction for delayed acknowledgements in the square-root
formula [2].

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70

 C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(C

D
F

)

 Segments

 Stationary Distribution of TCP Window
 (with ERD) in Ack Time

 p_max=0.02, B*RTT=5,
 min_th=20, max_th=275

ERD(Simulation)
ERD (Theory)

SqRoot Formula

Figure 2: Behavior of TCP Window with Early
Random Drop (and External Delay)

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60

 C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(C

D
F

)

 Segments

 Stationary Distribution of TCP Window
 (with RED) and State_Dependent Loss

 p_max=0.02,
 min_th=20, max_th=275

RED/ No Delayed ack(Simulation)
RED/ No Delayed acks (Theory)

RED/ Delayed ack(Simulation)
RED/ Delayed acks (Theory)

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60

 C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(C

D
F

)

 Segments

 Stationary Distribution of TCP Window (with RED)
 in Ack Time

 p_max=0.02, B*RTT=5,
 min_th=20, max_th=275

RED/ No Delayed ack(Simulation)
RED/ No Delayed acks (Theory)

RED/ Delayed ack(Simulation)
RED/ Delayed acks (Theory)

Figure 3: Behavior of TCP Window with Random Early
Detection (with & without external delay and delayed acks)

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70

 C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(C

D
F

)

 Segments

 Stationary Distribution of TCP Window (with Delayed Acks)
 (through an ERD port) in Ack Time

 p_max=0.02, B*RTT=5,
 min_th=20, max_th=275

ERD(Simulation) with delayed acks
ERD (Theory) with delayed acks

SqRoot Formula with delayed acks

Figure 4: Behavior of TCP Window with
Delayed Ack and Early Random Drop

V. CONCLUSION

In this paper, we present a technique for analyzing and predict-
ing the window distribution of a persistent TCP connection over
a path where packet losses occur with variable (state-dependent)
probability and where packet drops are conditionally uncorre-
lated events. The key to an effective numerical procedure for
predicting the distribution is the change in the index to subjective
time, which is a history-dependent rescaling of the time index.

8

Comparisons with simulation results suggest that this tech-
nique is fairly accurate in predicting obtaining TCP window
behavior of current TCP versions when the loss probabilities are
low and timeouts are relatively rare events. In particular, we find
that this analysis can be used to predict the window behavior
of a single persistent TCP flow interacting with queue manage-
ment algorithms like Early Random Drop and Random Early
Detection. While the accuracy of the predictions was expected
for Early Random Drop, the fit for the case of Random Early
Detection was surprisingly good.

We are currently attempting to utilize this approach to extend
the analysis to the case of multiple persistent TCP connections
interacting with ERD/RED queues. By obtaining reasonably
accurate distributions of individual TCP windows, we hope to
derive an accurate characterization of the composite queue dy-
namics (including its mean and variance).

APPENDICES

I. POISSON NATURE OF PACKET DROP EVENTS

We prove here that the subjective time formulation results in
an inter-loss interval that is exponentially distributed with mean
1 and is independent of past and future intervals. For the TCP
process under consideration, this property is asymptotically true
as the loss probabilities tend towards 0.

Let us find the probability
�%� � � � 8 , i.e., the probability

at least subjective time 8 elapses between the
� ? " 1 � ��� packet

loss and the ?��� packet loss. We renumber the packets: packet'
(temporarily) denotes the

' ��� packet after the one that was the? ��� loss. Since the congestion window is increasing after the ? ���
loss, there exists with probability 1 a (random!)

�
such that

1
� # 2

� ����� � # � � 8 / # 1
� # 2

� ����� � # � � 1 '
The probabilities # � are also random.

The probability of interest is that none of the first
�

packets
are lost. Since

�
is random, this probability equals

�(
��� 1

�%��� � � � ��� � 1

�
1 " # � � � � � ��� ' (I.1)

As long as (with probability one) max
� # � � 1 / ' / � is

almost zero, the expression (I.1) is close to

�(
��� 1

����� � � � � 7 � ��	� 1

< � � � � ��� '

Since 0 � 8�" � �� � 1 # � /�# � � 1, we see that as long as (for
example) � max

� # � � 1 / ' / � � 1 �� � 0 � (I.2)�%� � � � 8 � � 7 B .
Since the above proof is also independent of the size of the

packet that caused the i-th packet loss, we see that if condition
(I.2) holds6, the inter-loss intervals (in subjective time) are not
only exponentially distributed, but also independent of past and
future intervals. This establishes the fact that the loss events are
realizations of a Poisson process of intensity 1 in subjective time.

6Note that the condition (I.2) may hold even if ++; � 1 is not small. All we

II. DIFFERENCES BETWEEN ERD AND RED

In this appendix, we discuss the differences between the Early
Random Drop (ERD) and the Random Early Detection (RED) al-
gorithms, which are important in understanding the applicability
of our loss model. The important differences are:� RED operates on the average (and not the instantaneous)

queue length. The drop probability, # , is thus a function of
the weighted average (

� * ��
) of the queue occupancy i.e., #
is a function not just of

� � but of
� � � � � � 7 1 � � � 7 2 � ' ':' �

with an exponential decay.
� * ��
 closely mirrors the instan-

taneous occupancy only if the queue varies slowly.� To prevent large inter-drop durations, RED increases the
drop probability for every accepted packet. (This prop-
erty, which we call drop biasing, is achieved by using a
variable, ��� 3 , which increases with every successive ac-
cepted packet; the true dropping probability is then given
by

< � � �
1 7 � � � � < � � � . This results in an inter-drop period that is

uniformly distributed between
�
1 � ':' ' � � 1< � � � � � , as opposed

to the independent drop model in ERD which results in
geometrically distributed inter-drop periods.� Some RED configurations have a sharp discontinuity in drop
probability: when the average queue exceeds & # � ��� , # � � �
becomes 1 so that all incoming packets are deterministically
dropped. This contrasts with our assumption that random
drop occurs throughout the entire range of the buffer occu-
pancy. Our analysis applies to RED queues only if the TCP
process almost never builds up queues that exceed & # � ��� .

III. PROOF OF CONVERGENCE OF � ��� �
To see that � ��� � in equation (3.8) indeed converges to a limit,

let us define � ��� � by � ��� � � � �, + ��� � � � . Now, assume that
there exists a

 � 1, such that � ��� � / ,@ � �
(i.e., # ��� � �
 �

).This is a stronger requirement than � ��� � � �
; in the case

of the TCP model,

 � 2. Now since
 �"� � is a non-decreasing

function of
�

,

* � � ��
 �� � � � � # @ ��
 �� � � � �
 � " �
 � # @ �
0

 �� � � �
so that # * � � ��
 ��� � � � �
 " 1
 # @ �

0

 ��� � � � (III.3)

Hence, � ��� � / � � �,
 ��� � � 7�� � � @ � � � � where � � @ 7 1@ . Thus,

� ��� � / � # �,
 ��
 � � � 7�� � � @ � � � � (III.4)

/ � � 1 "�� � # �@ ,
 �"� � � 7�� � �
� � � � (III.5)

/ � � 1 "�� �
�

� 7�� � � @ , � (III.6)

This shows that � ��� � is upper bounded by � � 0 � . (Note that for
the case of TCP,

 � 2 and � � 1, so that � � 0 � � 1; in other
cases, C(0) is some finite value.) Now, consider a random vari-
able with density � ��� � ���

� , �� �
0
� and let � 1 � � �A� ':' ' � � � be � i.i.d

really need is the congestion window almost always stays small enoughfor +�� �
to be small.

9

realizations of this random variable and let � �
1
� ��� �

2
� � ':' ' � � � � �

be the order statistic. Then,

� 743(576 �8 9(: <# , 1 = , ' ':' # , > = * � , >CB 1
� + ��� 1 � ':' ' + ��� � � � � � ' ' ' � � 1 �
� � ��� � �

� !
�

� !�9�: � � � � � � # � � � � 7 1
� � � 9�! ' � � 2 � ':' ' � � � � � � � � � � ' �	'

(III.7)
Hence, if we denote the sum of the first ; terms in the RHS of
equation (3.8) as � 6 ��� � , we see that

� � ��� � " � 6 ��� � � / ¯� �(
� � 6 �

��� � �'
!
� (III.8)

which proves that � ��� � is indeed convergent.

REFERENCES

[1] V Jacobson, "Congestion Avoidance and Control", SIGCOMM 1988.
[2] T Ott, M Matthis and J Kemperman, "The Stationary Behavior of Ideal-

ized Congestion Avoidance", ftp://ftp.bellcore.com/pub/tjo/TCPwindow.ps,
August 1996.

[3] J Padhye, V Firoiu, D Towsley and J Kurose, "Modeling TCP Throughput:
a Simple Model and its Empirical Validation", Proceedings of Sigcomm
’98,September 1998.

[4] A Kumar, "Comparative Performance Analysis of Versions of TCP in a Local
Network with a Lossy Link", IEEE/ACM Transactions on Networking,
August 1998.

[5] T V Lakshman, U Madhow and B Suter, "Window-based Error Recovery
and Flow Control with a Slow Acknowledgement Channel: a Study of
TCP/IP Performance", Proceedings of Infocom ’97, April 1997.

[6] S Floyd, "Connections with Multiple Congested Gateways in Packet-
Switched Networks Part 1: One-way Traffic", Computer Communication
Review, Vol.21, No.5, October 1991.

[7] V Jacobson, "Modified TCP congestion avoidance algorithm", April 30,
1990, end2end-interest mailing list.

[8] T Ott, "Is Random Early Drop fair?", ftp://ftp.isi.edu/end2end/end2end-
interest-1996.mail (Nov. 19, 1996).

[9] M Mathis, J Semke, J Mahdavi and T Ott, "The Macroscopic Behavior
of the TCP Congestion Avoidance Algorithm", Computer Communications
Review, July 1997.

[10] E Hashem, "Analysis of Random Drop for Gateway Congestion Control",
MIT-LCS-TR-506.

[11] S Floyd and V Jacobson, "Random Early Detection Gateways for Conges-
tion Avoidance", IEEE/ACM Transactions on Networking, August 1993.

[12] A Parekh and R Gallager, A Generalized Processor Sharing Approach
to Flow Control in Integrated Services Networks: The Single-Node Case,
IEEE/ACM Transactions on Networking, June 1993

