
1

Effect of Exponential Averaging on the Variability
of a RED Queue

Archan Misra Teunis Ott John Baras
archan@research.telcordia.com tjo@research.telcordia.com baras@isr.umd.edu

Abstract— The paper analyzes how using a longer memory of the past
queue occupancy in computing the average queue occupancy affects the
stability and variability of a RED queue. Extensive simulation studies with
both persistent and Web TCP sources are used to study the variance of the
RED queue as a function of the memory of the averaging process. Our re-
sults show that there is very little performance improvement (and in fact,
possibly significant performance degradation) if the length of memory is
increased beyond a very small value. Contrary to current practice, our re-
sults show that a longer memory reduces the negative correlation typically
observed among the windows of the constituent TCP flows, and hence, sug-
gest the use of the instantaneous queue occupancy in practical RED queues.

I. INTRODUCTION

Mechanisms such as RED [1] and ECN [2], which provide
randomized and early notification of congestion, have been rec-
ommended [3] as congestion control techniques in the Internet,
especially for TCP traffic. Algorithms such as RED and ECN
primarily attempt to reduce buffer underflow and consequent
under-utilization of link capacity by preventing the synchro-
nized evolution of the TCP congestion windows. Techniques
which reduce the variability in the queue occupancy without
affecting the ability of such random notification buffers to ab-
sorb transient bursts are recommended, as they indirectly reduce
the probability of buffer underflow. Decreasing the variability
also achieves an important secondary goal: reduction of jitter.
Reduced jitter is beneficial, especially for real-time application
traffic, such as Voice-over-IP, which might be multiplexed on
the same queue.

To minimize the bias against transient bursts, current im-
plementations use an exponentially weighted moving average
(EWMA) of the past queue occupancy in determining the drop-
ping/ marking probability. Mathematically speaking, the drop-
ping probability, ������� is a function of the averaged queue oc-
cupancy, �	��
� ; ����
� is computed for every incoming packet
according to the iterative relationship:

�����
��� ����������� ���������
� � �!� �	�"�#%$&$(' (1)

where superscript) refers to the arrival of the)�*�+ packet and
� "�#($&$ refers to the instantaneous queue occupancy. � is the
weight (also called the smoothing factor or the forgetting factor)
and effectively determines the length of the memory used in the
averaging process.

In this paper, we investigate how the length of the memory
(history of the past queue occupancy) in the dropping/marking

Archan Misra and Teunis Ott are with Telcordia Technologies, 445 South
Street, Morristown, NJ 07960. John Baras is with the Center for Satellite and
Hybrid Communication Networks at the University of Maryland, College Park,
MD 20742.,

(c) 2001. Telcordia Technologies, Inc.

process affects the stability and variability of the queue. We re-
port on extensive simulations, which studied how the length of
the memory in the EWMA process affected the variability of the
queue occupancy under RED. In contrast to currently preferred
values for � , we find that random dropping queues provide bet-
ter performance when little or no memory is used in the deter-
mination of the packet drop probability.

We first use persistent TCP sources to show how the use of a
longer memory in the dropping process gradually increases the
oscillatory behavior (and hence, the variability) of the queue oc-
cupancy. We also demonstrate that an increase in the round-trip
times of the TCP flows makes the queue occupancy less sta-
ble and more prone to large variations. We subsequently use
both persistent as well as Web-style TCP traffic sources to show
that using a lower smoothing factor (weight) while computing
the average queue occupancy (i.e., increasing the memory in-
volved in the dropping process) never reduces the variability
of the queue occupancy and often increases it. In particular,
we demonstrate that increasing the memory of the averaging
process leads to an appreciable increase in the queue variance
for persistent TCP flows, and a significant, but less dramatic,
increase in the queue variance for Web-type intermittent TCP
flows.

The simulation results in this paper thus corroborate analyt-
ical results in [4], which modeled the dynamics of a random
drop buffer using a Delayed Ornstein-Uhlenbeck process. In
this paper, we show how the change in the variance of the queue
occupancy with increasing memory in the averaging process is
really due to changes in the negative correlation among the con-
gestion windows of the competing TCP flows, a phenomenon
discussed in [5]. Our studies show that larger memory in the av-
eraging process decreases this negative correlation, and thereby
increases the queue variance without noticeably affecting either
the overall drop probability or the distribution of the individual
TCP windows.

While our simulation studies involve only RED queues
performing packet drops, the underlying explanation applies
equally to ECN queues providing congestion feedback via
packet marking. The results presented here would essentially
apply to any randomized congestion notification mechanism.

A. Related Work

Randomized early congestion feedback for TCP was first pro-
posed in [6], where the dropping probability was based on the
instantaneous queue occupancy. The well known paper by Floyd
and Jacobson [1] introduced Random Early Detection (RED),
which continues to be the most popular randomized congestion
feedback mechanism currently deployed. Floyd and Jacobson

[1] qualitatively motivates the use of an exponentially-smoothed
average queue occupancy (as specified in equation 1) and em-
ploys a technique to generate a uniform distribution for the gap
between successive packet drops. Very few results, however, ex-
ist on the appropriate choice of the weight, � , as well as other
RED parameters. Studies have shown how adaptive algorithms
for modifying RED’s drop thresholds can improve the perfor-
mance of RED over wide variations in the offered load and the
number of active flows. For example, SRED [7] modifies the
drop probability based on the number of active flows, while
BLUE [8] adapts the dropping probability based on buffer over-
flow and link idle events. Few results, however, exist on the de-
termination of the appropriate length of the exponential memory
in RED’s dropping process. Note that the results of this paper
complement approaches such as SRED and BLUE; our recom-
mendations on the appropriate choice of � apply not just to the
basic RED algorithm but to its adaptive variants as well.

Ott [4] presented a mathematical model to approximate the
behavior of a queue buffering TCP traffic. The model uses a
diffusion approximation for the variation in the occupancy of a
RED/ECN queue, when shared by many persistent TCP sources.
After incorporating the effects of round-trip delays in the TCP
feedback loop and the EWMA mechanism in the buffer, the dif-
fusion model was found to be a delayed Ornstein-Uhlenbeck
process with exponential smoothing. Stochastic stability algo-
rithms from control theory were then applied to show that, un-
der sufficiently large delays in the feedback loop, the approx-
imated queue behavior would become unstable, even if expo-
nential smoothing was absent. More importantly, exponential
smoothing never improves the stability of the diffusion process,
and in many cases, can actually drive a stable process into un-
stable behavior. We shall use our simulations to validate these
mathematical conclusions.

[5] showed how the congestion windows of different TCP
flows sharing the same bottleneck buffer exhibit negative cor-
relation; such negative correlation explains why the variance of
the queue is smaller than the sum of the individual variances. [9]
shows how this negative correlation can be exploited by ‘drop-
biasing’ strategies that alter the distribution of packet drops to
further reduce the variability of the queue occupancy. Our sim-
ulations will use all the

�
drop-biasing strategies presented in

[9] to show how the use of excessive memory in the dropping
process degrades the queue variability in all instances.

II. MATHEMATICAL MODELS FOR QUEUE AND SOURCE

BEHAVIOR

In this section, we mathematically represent the process of
determining the packet drop probability in a RED buffer and the
source models for TCP traffic used in our simulations. We also
present the set of metrics used to determine how changes in �
impact the ability of the RED queue to handle bursty traffic.

A. Model for Random Dropping Queue Behavior

The dropping probability in RED queues is a function of the
relevant buffer occupancy, denoted by � � . The drop function
determines the base packet dropping probability and is denoted

by ��� � � .
For our simulations, we use the standard linear model for the

drop function, so that:

�������	�
 ��������������
� � ��������� � ��� (2)

� �"!$#&%('(���*)+��� � ��� �
��� � ���)+����� ��� �,����� ����- � - ��� � ���

where .*/�0 *�+ and .!)21 *�+ are the maximum and minimum drop
thresholds and �43 �65 is the maximum packet drop probability.

As shown in equation (1), RED uses an EWMA-based esti-
mation of the averaged queue occupancy, � ��
� , in evaluating
the drop function. Implementors can vary the length of memory
used in the dropping process by varying the weight � . A smaller� implies a relatively larger memory in the EWMA process, i.e.,
a greater impact of the past queue occupancy on the current drop
probability. Note that if the weight � � � , the drop function de-
pends only the instantaneous queue occupancy; as �87:9 , the
memory of the averaging process increases. As a first approxi-
mation, the length of the memory in the averaging process can be
expressed as �; . Accordingly, by varying � within the interval�<9 ' � = , we can obtain the entire range of memory in the dropping
process > .

The drop function ��� � � essentially determines the mean drop
probability associated with a specific queue occupancy: if the
queue occupancy was to remain constant at � , one out of every

�?A@CBED *�+ packet would be dropped on average. Different forms of
‘drop-biasing’ can be used to alter the distribution of the inter-
drop gap, as long as the mean gap stays unchanged. Five dif-
ferent forms of drop-biasing strategies are studied in [9]; we
use all the

�
drop-biasing strategies to demonstrate that our ob-

servations on the role of memory in the averaging process are
independent of the choice of the drop-biasing strategy.

B. TCP Source Models and Simulation Parameters

We use the TCP New Reno version present in the ns-2 [10]
simulator for our simulations. Two separate source models
(which emphasize different phases of TCP’s congestion control
algorithm) for TCP traffic were used in our simulations. The
conventional persistent source model assumes infinite-sized file
transfers; the sender’s congestion window is the only constraint
on the injection of new data packets. Under conditions of mod-
erately low loss, the congestion avoidance algorithm [11] is then
the primary flow control mechanism.

The Web TCP source model mimics the effects of Web-based
TCP transactions and involves the transfer of finite-sized files.
The model is based on [12] and consists of a cycle of a single
Web transaction (each consisting of multiple file transfers) al-
ternating with inactive off-periods (when no data transfer takes
place). Each file transfer occurs sequentially and on a distinct
TCP connection. Since most files are only a few KBytes in size,
most files are transferred using TCP’s initial slow-start algo-
rithm. More importantly, given the on-off nature of the sources,
F
If an instantaneous queue occupancy is used (no memory), � is the same as�(G2H IJI ; if exponential averaging is present, � is identical to � #&KML , the averaged

queue occupancy.N
When O �P� , we shall refer to the queue as as an ERD queue to indicate the

use of the instantaneous queue occupancy in the packet dropping process.

the number of active TCP connections fluctuates rapidly; since
the occupancy of the RED queue is dependent on the number of
active flows, the queue occupancy will fluctuate as well [7]. Cur-
rent Web transfer protocols (e.g., HTTP 1.1 [13]) use persistent
TCP connections

�
, whereby the same TCP connection is used

for multiple transfers. This clearly results in a larger effective
file size transferred by a single connection; the source behav-
ior is then closer to that of persistent TCP sources. Results in
section IV show that the effects of memory in the EWMA pro-
cess are more pronounced for persistent TCP sources than for
our Web source model. Accordingly, the adoption of HTTP 1.1
only serves to reinforce our observations on the behavior of the
RED queue with Web TCP traffic.

Due to space limitations, we only present results here for a
network topology involving a single bottleneck random drop
queue with a capacity (C) of ��� � Mbps, a .!)21 *�+ of

� 9 pack-
ets, a . /�0 *�+ of

� 9 9 packets, a � 3 �65 of 9�� 9 � and a maximum
buffer size of

� 9"9 packets; results from other network specifi-
cations are qualitatively similar and are not discussed here. All
TCP and UDP connections have packet sizes of

� � � bytes. To
remove possible synchronization effects among different TCP
flows, the round-trip times of the individual TCP flows were
uniformly spaced over the interval � � 9 ' � � 9 � msec. To indicate
the universality of our observations, we shall also occasionally
present results where all the flows have similar round-trip times
(
�"�

msec). The queue occupancy and TCP window sizes are
sampled every

� 9 msec to generate our statistics. The number of
persistent TCP sources is varied between

� � � � while the num-
ber of ‘Web TCP’ sources is varied between � 9 � � � 9 . Since the
different drop-biasing strategies lead to different expressions for
the mean inter-drop gap, we modified the maximum drop prob-
abilities for each strategy (using the technique explained in [9])
to ensure that the mean queue occupancies were nearly the same
for all drop-biasing strategies.

C. Metrics for Bursty Losses

To study how changes to the weight � affect the ability of
RED to absorb bursty losses, we use a set of per-flow loss-
related metrics and average over the individual flows to obtain
an aggregate metric.

The simplest such metric of packet losses is the runlength
of packet drops, which represents the distribution of continuous
bursts of losses. The runlength is, however, not a very suitable
metric, since TCP flows rarely lose consecutive packets. More
importantly, TCP behavior exhibits timeouts and performance
degradation when multiple losses occur in a window; the losses
need not be back to back. To study the presence of such ex-
tended loss bursts, we study the distribution of the number of
losses in a block (called cluster) of � consecutive packets. (In
our studies, we chose � to be approximately half the reciprocal
of the average packet loss rate. This ensures that, in the case of
random and independent packet drops, the number of losses in
a block is typically either 9 or � .) To investigate the possible ex-
istence of loss bursts of length larger than the block size � , we
�
In the context of HTTP, the use of the word ‘persistent’ implies the use of

a single TCP connection for multiple file transfers. This is different from the
earlier definition of persistent TCP source models, which refers to the transfer
of infinitely large files over a single TCP flow.

also determined, for each individual flow, the auto-covariance
function � �
	 � ' 	 � 9 ' � ' ����� of the time-series formed by the
number of packet drops in each consecutive cluster. In gen-
eral, a larger spread of the distribution of the number of packet
losses per cluster or larger values of the average auto-covariance
� ��
� �� � for � ��� ' � ' ����� � indicates a lower ability to absorb
transient bursts.

III. EXPONENTIAL MEMORY AND QUEUE STABILITY

Before studying the statistical behavior of a RED queue, we
first present plots that enable us to directly understand the ef-
fect of changing � on the queue dynamics. Analysis in [4] pre-
dicts that, as the exponential smoothing of the delayed Ornstein-
Uhlenbeck process increases (� becomes smaller), the queue be-
havior becomes less stable. We can observe this behavior in the
plots in figure 1 which shows how the RED queue occupancy
varies (for � 9 persistent sources) as the RTT is held constant
(at � 9 9 msec) and the � (EWMA memory increased). We can
clearly see that smaller values of � (longer memory) drive the
queue occupancy into an oscillatory mode.

0

20

40

60

80

100

120

140

160

200 300 400 500

R
E

D
 Q

ue
ue

 O
cc

up
an

cy
 (

P
kt

s)

Time (Secs)

Queue Occupancy with RED (Geometric Dropping)

 Bottleneck B/W= 1.5Mbps,RTT~=100msec,
 10 Persistent Sources

Queue Occupancy (10msec Interval) for Weight=0.99

0

20

40

60

80

100

120

140

160

200 300 400 500

R
E

D
 Q

ue
ue

 O
cc

up
an

cy
 (

P
kt

s)

Time (Secs)

Queue Occupancy with RED (Geometric Dropping)

 Bottleneck B/W= 1.5Mbps,RTT~=100msec,
 10 Persistent Sources

Queue Occupancy (10msec Interval) for Weight=0.1

0

20

40

60

80

100

120

140

160

200 300 400 500

R
E

D
 Q

ue
ue

 O
cc

up
an

cy
 (

P
kt

s)

Time (Secs)

Queue Occupancy with RED (Geometric Dropping)

 Bottleneck B/W= 1.5Mbps,RTT=~100msec,
 10 Persistent Sources

Queue Occupancy (10msec Interval) for Weight=0.01

0

20

40

60

80

100

120

140

160

200 300 400 500

R
E

D
 Q

ue
ue

 O
cc

up
an

cy
 (

P
kt

s)

Time (Secs)

Queue Occupancy with RED (Geometric Dropping)

 Bottleneck B/W= 1.5Mbps,RTT~=100msec,
 10 Persistent Sources

Queue Occupancy (10msec Interval) for Weight=0.001

0

20

40

60

80

100

120

140

160

200 300 400 500

R
E

D
 Q

ue
ue

 O
cc

up
an

cy
 (

P
kt

s)

Time (Secs)

Queue Occupancy with RED (Geometric Dropping)

 Bottleneck B/W= 1.5Mbps,RTT~=100msec,
 10 Persistent Sources

Queue Occupancy (10msec Interval) for Weight=0.00001

Figure 1: RED Queue Occupancy as Fn. of Weight

0

20

40

60

80

100

120

140

160

180

200 300 400 500

R
E

D
 Q

ue
ue

 O
cc

up
an

cy
 (

P
kt

s)

Time (Secs)

Queue Occupancy with RED (Geometric Dropping)

 Bottleneck B/W= 1.5Mbps,RTT~=25msec,
 50 Persistent Sources

Queue Occupancy (10msec Interval) for Weight=0.1

0

20

40

60

80

100

120

140

160

180

200 300 400 500

R
E

D
 Q

ue
ue

 O
cc

up
an

cy
 (

P
kt

s)

Time (Secs)

Queue Occupancy with RED (Geometric Dropping)

 Bottleneck B/W= 1.5Mbps,RTT~=100msec,
 50 Persistent Sources

Queue Occupancy (10msec Interval) for Weight=0.1

0

20

40

60

80

100

120

140

160

180

200 300 400 500

R
E

D
 Q

ue
ue

 O
cc

up
an

cy
 (

P
kt

s)

Time (Secs)

Queue Occupancy with RED (Geometric Dropping)

 Bottleneck B/W= 1.5Mbps,RTT~=500msec,
 50 Persistent Sources

Queue Occupancy (10msec Interval) for Weight=0.1

0

20

40

60

80

100

120

140

160

180

200 300 400 500
R

E
D

 Q
ue

ue
 O

cc
up

an
cy

 (
P

kt
s)

Time (Secs)

Queue Occupancy with RED (Geometric Dropping)

 Bottleneck B/W= 1.5Mbps,RTT~=2sec,
 50 Persistent Sources

Queue Occupancy (10msec Interval) for Weight=0.1

Figure 2: RED Queue Occupancy as Fn. of RTT

Figure 2 plots the RED queue behavior (for � � 9 � � and� 9 persistent sources) as the RTT of the TCP flows is varied (a
lower plot corresponds to a longer RTT). We can see that, for ex-
ample, while the queue occupancy is relatively stable when the
RTT is � �"�

msec, the queue exhibits oscillatory behavior when
the RTT is � �

sec. This corroborates the theoretical analysis in
[4], which indicated that an increase in the delay in the feedback
loop might drive a stable occupancy process into an unstable re-
gion. The above figures show how specifying even moderately
large memory in the EWMA process can lead to oscillatory be-
havior in the queue occupancy. The next section explains how
this is really the result of changes in the negative correlation of
the windows of different flows.

IV. EXPONENTIAL MEMORY AND QUEUE VARIABILITY

In this section, we study how the variability of the queue oc-
cupancy depends on the length of the memory in the averaging
process. As a first approximation, the length of the memory can
be expressed as �; , where � is the weight. In this section, we
keep

�
, the number of TCP connections, fixed and vary � to

isolate the dependence of the queue occupancy on the weight
alone.

When the instantaneous queue occupancy is used (� � �),
[5] showed the presence of negative correlation among the TCP
windows. Negative correlation implies that the TCP window
sizes tend to vary out-of-phase: when the window size of one
flow is large, the other flows have smaller window sizes. In
such a situation, the sum of the window sizes (and indirectly
the buffer occupancy) at any instant would exhibit less variabil-
ity. Mathematically speaking, we can observe the correlation
behavior by comparing the variance of the sum of the window

sizes
� /�� �����

�����
	
�
� against the sum of the individual vari-

ances � �
�����

� /�� � 	 �
� . When the windows are uncorrelated, the

two are equal; for negative correlation, the sum should exhibit
lower variance (

� /
� ��� �
�����

	
�
�� � �

�����
� /
� � 	 �

�), while
for positive correlation, the sum should exhibit larger variance
(
� /
� � � �

�����
	
�
��� � �

�����
� /
� � 	 �

�). This follows from the
general relationship

� /
� �
��

�����

	
�
� �

��

�����

� /
� � 	 �
� �

�

������
����� � 	 � '

	
�
� (3)

Thus, the correlation can be indirectly observed by comparing
the variance of the sum of the windows (or, almost equivalently,
the variance of the queue occupancy,

� /
� � � �) with the sum of
the variances of the individual windows, � �

��� �
� /
� � 	 �

� .
We first intuitively explain why a larger memory in the av-

eraging process decreases this negative correlation among the
TCP windows and hence, increases the variability of the queue
occupancy. As � is decreased from � (increasing memory),
� ��
� becomes an increasingly low-pass filtered version of the
queue occupancy; ��� �	��
� � consequently changes more slowly.
A slower change in � ��
� increases the likelihood that the dif-
ferent TCP connections will observe the same drop probabil-
ity and hence, experience greater synchronization (at least in a
stochastic sense) in their window evolution. An excessive mem-
ory in the averaging process could thus defeat RED’s aim of
de-synchronizing the window evolution of the different flows
and effectively reduce the negative correlation observed among
the competing TCP windows. While a small amount of mem-
ory (use of very few samples of the past queue occupancy) can
guard against transient bursts from individual sources, an exces-
sive amount of memory can resurrect the possibility of synchro-
nized losses and lower bandwidth utilization. We now provide
the results that we have observed with persistent and Web TCP
connections.

A. Persistent TCP

Figure 3 shows the variation in the statistics of the RED queue
occupancy with changing � for

�
persistent TCP sources. We

see that the variance of the queue occupancy seems to decrease
extremely slightly (essentially stays constant) in some cases as� decreases from � to 9 � � , and then gradually increases (for
all drop-biasing strategies) with a further increase in the mem-
ory. We found this behavior to be consistent across all our
simulations. The graph also shows that the average queue oc-
cupancy is independent of the length of the exponential mem-
ory (as expected); this also demonstrates that our � 3 �65 adjust-
ment procedure was quite effective in making the mean queue
occupancy independent of the choice of the drop-biasing tech-
nique. The plot for the sum of the variance of the TCP windows
���
�����

� /
� � 	 �
� reveals that the window variances of the TCP

windows themselves stay fairly constant for different values of� . Accordingly, by comparing the variance of the queue occu-
pancy with the sum of the variance of the TCP windows, we can
see that a longer memory in the averaging process decreases the
extent to which the TCP windows are negatively correlated.

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3

V
ar

ia
nc

e
of

 Q
ue

ue
 O

cc
up

an
cy

- Log10(Exponential Weight) {Increasing Memory --->}

Exponential Weight Plots for RED versions

Bottleneck B/W= 1.5Mbps,RTT=25<-->250msec,
PktSize= 512 bytes, 5 Persistent TCPs

Geometric Drops
Delayed Geometric Drops

Uniform Drops
Delayed Uniform Drops

Deterministic Drops

0

5

10

15

20

25

30

35

40

45

0 1 2 3

M
ea

n
Q

ue
ue

 O
cc

up
an

cy

-Log10(Exponential Weight) {Increasing Memory --->}

Exponential Weight Plots for RED versions

Bottleneck B/W= 1.5Mbps,RTT=25<-->250msec,
PktSize= 512 bytes, 5 Persistent TCPs

Geometric Drops
Delayed Geometric Drops

Uniform Drops
Delayed Uniform Drops

Deterministic Drops

0

50

100

150

200

250

300

0 1 2 3

S
um

 o
f V

ar
ia

nc
e

of
 T

C
P

 W
in

do
w

s

-Log10(Exponential Weight) {Increasing Memory --->}

Exponential Weight Plots for RED versions

Bottleneck B/W= 1.5Mbps,RTT=25<-->250msec,
PktSize= 512 bytes, 5 Persistent TCPs

Geometric Drops
Delayed Geometric Drops

Uniform Drops
Delayed Uniform Drops

Deterministic Drops

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3C
oe

ff.
 o

f V
ar

ia
tio

n
(S

td
. D

ev
/M

ea
n)

 o
f Q

ue
ue

 O
cc

up
an

cy

-Log10(Exponential Weight) {Increasing Memory --->}

Exponential Weight Plots for RED versions

Bottleneck B/W= 1.5Mbps,RTT=25<-->250msec,
PktSize= 512 bytes, 5 Persistent TCPs

Geometric Drops
Delayed Geometric Drops
Uniform Drops
Delayed Uniform Drops
Deterministic Drops

Figure 3: Persistent TCP and RED Queue Dynamics

Reducing � beyond � 9 � � leads to an appreciable reduction
in the negative correlation among the TCP connections; in fact,
when � is reduced beyond 9�� 9 9 � (not plotted here), the TCP
windows become positively correlated (the queue variance ex-
ceeds the sum of the variance of the TCP windows themselves)!
In fact, for the Deterministic and Delayed Uniform drop-biasing
strategies (which were shown in [9] to outperform the other
drop-biasing alternatives), � � ��� 9 seems to provide the most
optimal weight setting.

As stated earlier, while lowering the queue variability is in-
deed a laudable objective, we must be careful to ensure that
this does not occur at the cost of a rapid increase in the bursti-
ness of the packet losses. Accordingly, in figure 4, we plot the
burstiness-related metrics for

� � �
as a function of the weight.

We can see from the graphs that increasing the memory in the
averaging process increases the variability of the queue occu-
pancy variability without significantly improving the ability to
decorrelate the packet drops.

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 5 10

A
ve

ra
ge

d
A

ut
o-

C
ov

ar
ia

nc
e

F
un

ct
io

n

Index of Auto-Covariance Function

Auto-Covariance for Persistent TCP (N=5) with RED

Bottleneck B/W= 1.5Mbps,RTT=25<->250 msec,
PktSize= 512 bytes, PacketBlock= 90

Weight=0.001
Weight=0.05
Weight=0.5
Weight=0.99

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

(f
or

 L
os

se
s

in
 a

 B
lo

ck
)

Number of Losses in a PacketBlock

CDF for Persistent TCP Packet Losses (N=5) with RED

Bottleneck B/W= 1.5Mbps,RTT=25<->250 msec,
PktSize= 512 bytes, PacketBlock= 90

Weight=0.001
Weight=0.05
Weight=0.5

Weight=0.99

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

0 5 10

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

of
 L

os
s

R
un

le
ng

th
s

Runlength (Number of Consecutive Packet Losses)

CDF of Runlengths of Persistent TCP Packet Losses (N=5) with RED

Bottleneck B/W= 1.5Mbps,RTT=25<-->250msec,
PktSize= 512 bytes, PacketBlock= 90

Weight=0.001
Weight=0.05
Weight=0.5

Weight=0.99

Figure 4: Burstiness-Related Metrics for
Persistent TCP and RED

B. Web TCP

Plots of the RED queue statistics with Web TCP sources also
show similar behavior: the queue variance increases with an in-
crease in memory (smaller �), even through the mean queue oc-
cupancies remain fairly unchanged. We omit the plots here due
to space constraints. In general, for similar mean queue occu-
pancies, the variance is much higher for Web TCP sources than
persistent TCP sources. This occurs primarily because the num-
ber of active connections in the Web TCP source model fluctu-

ates rapidly; as the number of active flows changes, the occu-
pancy of the RED queue also exhibits rapid variation. To isolate
the portion of the queue variance that depends on the memory
of the averaging process itself, we also obtained the conditional
variance and mean of the queue occupancy, i.e., the variance of
the queue occupancy as a function of the number of active con-
nections. Plots of the conditional queue occupancy statistics,
as well as the probability distribution of the number of active
flows, are provided in figure 5, for the case of

� 9 Web TCP con-
nections and the Deterministic drop-biasing strategy. We can
see that the number of active connections lies between ��� 9 ' � 9 �
most of the time; furthermore, there were never more than � �
active connections present at any sampling instant. (The value
of 9 for the mean and variance graphs for

� � " * �
��
� � 9 is sim-

ply a place-holder indicating the absence of any samples.) The
graphs of figure 5 clearly reveal that while the conditional means
are about the same for each strategy, the conditional variances
are very different for different values of the weight. Clearly, a
larger memory in the dropping process leads to a significantly
larger variance in the queue occupancy. This phenomenon can
be observed more clearly for Web TCP sources if a mechanism,
such as SRED, is used that reduces the sensitivity of queue oc-
cupancy to the number of active sources.

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40

C
on

di
tio

na
l M

ea
n

of
 Q

ue
ue

 O
cc

up
an

cy

Number of Active (Web TCP) Sources

Performance of Web TCP and RED

RTT=25<-->250msec, Geometric Dropping,
PktSize= 512 bytes,N=70

Weight=0.001
Weight=0.05

Weight=0.5
Weight=0.99

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40

C
on

di
tio

na
l V

ar
ia

nc
e

of
 Q

ue
ue

 O
cc

up
an

cy

Number of Active (Web TCP) Sources

Performance of Web TCP and RED

RTT=25<-->250msec, Geometric Dropping,
PktSize= 512 bytes,N=70

Weight=0.001
Weight=0.05

Weight=0.5
Weight=0.99

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 10 20 30 40

P
ro

ba
bi

lit
y

D
is

tr
ib

ut
io

n(
N

or
m

al
iz

ed
 H

is
to

gr
am

)

Number of Active (Web TCP) Sources

Performance of Web TCP and RED

RTT=25<-->250msec, Geometric Dropping,
PktSize= 512 bytes,N=70

Weight=0.001
Weight=0.05

Weight=0.5
Weight=0.99

Figure 5: Conditional Plots for Web TCP and ERD

V. CONCLUSIONS

While the use of memory (via an exponentially weighted
moving average of the past queue occupancy) has been sug-
gested for RED, relatively few studies have investigated the op-
timal length of this memory for TCP traffic. Based on our ex-
tensive simulations with different drop-biasing strategies, we
conclude that, generally speaking, there is very little perfor-
mance improvement (and in fact, possibly significant perfor-
mance degradation) if the exponential weight � in the averag-
ing process is decreased too much from � . Our simulations also
show that the use of a longer memory in the averaging process
can often drive a stable occupancy process into oscillatory be-
havior. Such oscillations can also result if the delay in the TCP
feedback loop becomes too large.

Our results indicate that a longer memory in the dropping
process (smaller �) increases the coefficient of variation of the
queue occupancy for both persistent and Web TCP traffic. The
relative increase in queue variance is more pronounced for per-
sistent TCP traffic; this is primarily due to the inherent variation
in the RED queue occupancy associated with rapid changes in
the number of active flows in the Web traffic model. We used
statistical techniques to indirectly demonstrate how memory in
the averaging process reduces the negative correlation among
competing TCP flows; this decrease leads to a larger variance in
the queue occupancy. While the simulations reported here used
a low-speed (� � � Mbps) bottleneck additional simulations per-
formed with faster links (e.g., � � Mbps) reveal similar results.
Our observations thus appear to apply, at least qualitatively, for
buffers both at the network edges and in the backbone. However,
for a given value of � , the coefficient of variation of the queue
occupancy is lower at higher link speeds (due to the improved
traffic aggregation). Accordingly, relatively speaking, the in-
crease in queue variance with increasing memory is more sig-
nificant (in terms of the actual increase in delay jitter) at slower
edge links than at faster backbone links.

Published research on RED performance has often used �
settings of around 9 � 9"9 ��� 9 � 9"9 � . We, however, find that set-
ting � in the range 9�� � � � in the EWMA algorithm, especially
for well-designed drop-biasing techniques, leads to a smoother
queue variation and reduced jitter for buffered packets. This re-
sult is of practical relevance to operators deploying RED-like
algorithms in the Internet. While an excessively small value of� may not be practically detrimental in backbone buffers, our
studies indicate no justification for setting � to a very low value.

REFERENCES

[1] S Floyd and V Jacobson, “Random Early Detection Gateways for Conges-
tion Avoidance”, IEEE/ACM Transactions on Networking, August 1993.

[2] S Floyd, “TCP and Explicit Congestion Notification”, ACM Computer
Communication Review, October, 1994.

[3] B Braden, D Clark et al, “Recommendations on Queue Management and
Congestion Avoidance on the Internet”, RFC 2309.

[4] T Ott, “On the Ornstein-Uhlenbeck Process with Delayed Feedback”,
ftp://ftp.telcordia.com/pub/tjo, December 1999.

[5] A Misra, T Ott and J Baras, “The Window Distribution of Multiple TCPs
with Random Loss Queues”, Proceedings of IEEE GLOBECOM, Decem-
ber 1999.

[6] E Hashem, “Analysis of Random Drop for Gateway Congestion Control”,
MIT-LCS-TR-506.

[7] T Ott, S Lakshman and L Wong, “SRED: Stablized RED”, Proceedings of
IEEE INFOCOM, March 1999.

[8] W Feng, D Kandlur, D Saha and K Shin, “Blue: A New Class of Active
Queue Management Algorithms”, UM CSE-TR-387-99, 1999.

[9] A Misra, T Ott and J Baras, “Using ‘Drop-Biasing’ to Stablize the Occu-
pancy of Random-Drop Queues with TCP Traffic”, Proceedings of IEEE
International Conference on Communication Systems (ICCS), November
2000.

[10] The ns-2 network simulator, http://www-mash.CS.Berkeley.EDU/ns.
[11] V Jacobson, ”Congestion Avoidance and Control”, SIGCOMM 1988.
[12] Barford M and Crovella M, “Generating Representative Workloads for

Network and Server Performance Evaluation”, Boston University Techni-
cal Report, BU-CS-97-006.

[13] J Fielding, J Gettys et al, “Hypertext Transfer Protocol-HTTP/1.1”, IETF,
RFC 2616, June 1999.

