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Abstract

This note is a short tutorial on TCP (Transport Control Protocol), the reliable
transport protocol in the Internet. This note is meant as a quick and easy and
incomplete introduction to the main aspects of TCP, in particular those aspects of
most importance to the throughput performance of Internets. For a more complete
treatment, see e.g. [25] and [26].

This note is one of the deliverables for the “TCP-ATM Interactions” project
done at Bellcore in contract for Rome laboratories., Sept 1996 — Sept 1998. Other
deliverables are a simulation tool with documentation, see [4], a tutorial on ATM

with ABR, see [3], and a final report, see [5].

1 Introduction

This tutorial gives an overview of the most important aspects of the Internet TCP (Trans-
mission Control Protocol). Currently, there are three flavors of TCP: TCP-Tahoe [10],
(1990)), and TCP-Vegas [6]). Most implementations seem to be a mixture of Tahoe and

Reno. TCP-Vegas is still under research. In our simulation we incorporated what we think



is a faithful implementation of a “typical” version of TCP/IP-Reno. However, TCP/IP
tends to be different from manufacturer to manufacturer. We therefore do not expect
that any version of TCP/IP commercially available will be identical to the version in our

simulation.

This note is one of the deliverables for the “TCP-ATM Interactions” project done at
Bellcore in contract for Rome laboratories., Sept 1996 — Sept 1998. Other deliverables are
a simulation tool with documentation, see [4], a tutorial on ATM with ABR, see [3], and
a final report, see [5]. This note is a tutorial on TCP as it is supposed to be according to
IETF standards, but occasional references will be made to TCP as it is implemented in

our simulation, or to simulation runs reported in [5].

In all forms of TCP, the destination sends acknowledgements for packets that arrive
successfully. It is not the packet successfully received, but the packet (actually: byte)
next expected that is announced. The bytes in the stream transported are numbered.
If a packet arrives at the destination and (after the arrival) all bytes up to byte arr
have arrived, but byte arr + 1 has not arrived yet, the destination will send the ACK
“expect byte arr + 17. The acknowledgements may piggyback on top of data packets,
and a single message may (implicitly) acknowledge bytes from a number of packets. In
the simulation runs reported in our final report [5] there are no data packets in the
opposite direction to piggyback on. “Unexpected” packets (packets “out of sequence”)
are individually acknowledged, while “Expected” packets (packets “in sequence”) are
either acknowledged at the next 200 msec timer (this is the “delayed acknowledgement”
feature), or as soon as there are two packets to be acknowledged. As a result, there
is usually one ACK packet for every two data packets. In TCP-Tahoe, packet loss is
detected by maintaining a timer based on an estimate of the round-trip time RTT. TCP-
Reno also maintains a timer, but attempts to primarily detect packet loss before timer

expiration. Our simulation mimics TCP-Reno. To explain Reno, it is convenient to



first explain Tahoe. Both Tahoe and Reno have a dynamically changing “Window” W,
roughly the maximum number of unacknowledged packets a source can have outstanding.
The following simplified description of TCP Tahoe and TCP Reno has been adapted from
Lakshman and Madhow [16].

2 Description of TCP-Tahoe:

The algorithm followed by each connection has two parameters, current window size W

and threshold ©, which are updated as follows:

1. After most acknowledgements (but not after duplicate acknowledgements, see next
section):
if W<0,set W=W 4+ 1; Slow-Start Phase
else set W = W 4 1/| W|. Congestion-Avoidance Phase
(|x] is the integer part of x)

2. After a packet loss is detected (via timer expiration):

first set © = W/2, then set W = 1.

The algorithm typically evolves as follows (although, as described in [16] the evolution
can be somewhat different if the bottleneck buffer is small): when packet loss is detected,
the window 1s reduced to one. In the slow start phase that follows, the window grows
rapidly for every successfully acknowledged packet until it reaches half the window size
attained before the last packet loss. The algorithm then switches to the congestion avoid-
ance phase, probing for extra bandwidth by incrementing the window size by one for every
window’s worth of of acknowledged packets. This growth continues until another packet

loss is detected, at which time another cycle begins.



2.1 Description of TCP-Reno:

Once a packet has been lost, until the loss has been repaired, all later packets arriving at
the destination are “unexpected” packets and cause an ACK packet “expect x”, where x
is the sequence number of the first data byte in the missing packet. Hence, a single packet
loss can be detected at the source by consecutive acknowledgements having the same
“next expected number”. Such acknowledgement packets are called “duplicate acknowl-
edgement”. In Reno, the source retransmits the apparently lost packet after the number of
such repeated acknowledgements exceeds a threshold. This is called the “Fast-Retransmit
Feature.” At the same time the algorithm halves the window W. Also, in order to prevent
a burst of packets from being transmitted when the retransmission is finally acknowledged,
as soon as sufficiently many more duplicate ACKs for the same packet have been received
the algorithm temporarily permits the source to transmit a new packet for every new
duplicate acknowledgement until the “next expected” number in the acknowledgements
advances. While these subtleties are essential for the performance of the algorithm, (see
[11]) and have been implemented in our simulation, the following simplified description is

adequate for conveying and understanding of the algorithm’s behavior.

1. After every non-duplicate acknowledgement, the algorithm works as before:
if W<0O,set W=W 4+ 1; Slow Start Phase
else set W =1+ 1/| W]. Congestion-Avoidance Phase

2. When the number of duplicated acknowledgements reaches a threshold (in our sim-
ulation that threshold is three),
retransmit “next expected packet,” i.e., the apparently lost packet,
set @ = W/2, then set W = O (i.e. halve the window);
resume congestion avoidance using the new window once retransmission is acknowl-

edged.



3. Upon timer expiration, the algorithm goes into slow start as in Tahoe:

first set © = W/2, then set W = 1.

The implementation in our simulation is equivalent to the explanation above but
follows [25], in that after the third duplicate acknowledgement it enters the Fast-Recovery

Stage during which the variable cwnd temporarily has a different interpretation.

In Reno, loss is usually detected early through duplicated acknowledgements, and

instead of dropping the window to one, the window is halved.

It is worth relating our nomenclature to that used in standard TCP code (see for
example [19]): W is usually referred to as the congestion window cwnd, and © is denoted
as ssthresh. There also 1s an upper limit on the window size which is dictated by the
receiver and which is denoted by mazwnd. cwnd, ssthresh and mazwnd are actually
expressed in bytes, not packets, and through most of the runs we are reporting on in the

final report [5] we chose mazwnd equal to 512Kbytes (524,288 bytes).

Many researchers have observed that both Tahoe and Reno (without ABR) have the
potential for “Phasing”: as long as no congestion is present, all TCP connections passing
through a potential bottleneck buffer keep increasing their Window sizes (unless they reach
the mazwnd level). At some point, the sum of the rates gets high enough to cause backup
of the traffic in an output port, and some time later again this output port buffer fills
and packets or cells are lost. Since the sources of the traffic do not notice the congestion
until either duplicate acknowledgments start coming back or time-out occurs, they in fact
keep sending at the high rate for some time after loss starts occurring. The result is that
a single congestion episode leads to loss for many sources, who then start throttling their
output all at the same time. In addition, the fact that the sources keep sending at the
original high rate for some time after the congestion started increases the seriousness of

the congestion episode, and increases the risk that some sources will lose multiple packets.



Depending on the type and specific implementation of TCP in that source, this may lead

to much stronger throttling, thus increasing the “phasing” effect.

A possible solution to this problem is “RED” (Random Early Detection, often called
Random Early Discard or Random Early Drop) [9]. In RED the bottleneck switch or
router preemptively drops a carefully chosen streams of packets (or cells), in such a way
that sources never see loss of multiple packets in quick succession, and the loss-rate is
carefully tuned to keep the sources sending packets at (jointly) the right rate to prevent

both buffer underflow and overflow.

A different but related method for improving TCP performance by improving the

discard policy in routers and switches is the “Drop from Front” policy described in [17].

When congestion occurs in the segmentation buffer, the current simulation drops the
entire frame, which is equivalent to a packet. Dropping of cells in the switch buffer is
also from the tail. In 1996, we hope to experiment with “Random Early Detection” and

“Drop from Front”.

With ABR, if ABR indeed prevents cell loss in the shared bottleneck, it is likely that
“phasing” will be greatly reduced or eliminated. In its place, we have the problem of

overflow of the segmentation buffer.

As briefly discussed in Section 3 of this paper, TCP Reno runs into potential problems
when a sizable number of packets from the window gets lost. TCP Vegas attempts to
alleviate this by (among other techniques) attempting not to halve the cwnd more than
once during one congestion episode. “Selective Acknowledgement” is a new feature of
Reno currently being discussed in the IETF and has the same goal of providing robustness

under loss of multiple packets.



3 Timers in TCP

As mentioned above, TCP uses timers to determine that a packet has timed out. Following
the lead of (among others) [25] and [26] we will explain timers by a two-pass procedure.
The first pass gives a approximate and easy to understand description. The second pass

is correct.

3.1 Fine Grained Timers

The timing in TCP has two components. The first component produces estimates for
the current average of the round trip time (RT7T.s) and the current standard deviation
of the round trip time (SD.s). The second component uses these estimates for average
and standard deviation to determine when a sent but unacknowledged packet has been

underway long enough that it must be assumed lost, and must be re-transmitted.

For the first mechanism, there are so called timed packets. There is at most one timed
packet at a time. When there is no timed packet, under most circumstances the first
packet to be sent becomes a timed packet. This means a record of its departure time is
kept. When the packet is acknowledged the arrival time of the acknowledgement packet
is compared with the departure time of the packet, and the difference is the measured
round trip time (RTTyneqs). RTT.s: and S D, are now updated, approximately using the

rules

delta = RTTyyeas — RT Ty, (3.1)
7 1

RTTost = GRT Tt GRT Ty, (3.2)
3 1

SDest = ZSDGSt —|— Z|delta| (33)



At this point there no longer is a timed packet, so (under most ciscumstances) the

next packet to be sent becomes the new timed packet.

The TCP source also maintains and entity called RT'O (Retransmit Time Out). when
a “good” acknowledgement packet (i.e. non—duplicate acknowledgement) arrives at the

source, a time-out event is set for RT'O later. In this situation RT'O is computed as
RTO = RTT.ss +4 X SD¢g. (3.4)

Below we will see that actually RT'O has a minimum value of 500 msec. (TCP in our
simulation tool actually has a minimal RT'O value of 750 msec, this because we use
fine—grained timers but still want to emulate the behavior of coarse grained timers as
used in the standards, see below.) If by the time the “RT'O” timer expires no other
“good” acknowledgement has arrived a time-out event occurs. This means that the oldest
unacknowledged packet (the one of which the first byte is the first unacknowledged byte)
is retransmitted, and a new RT'O is computed equal to twice the old one (with a maximum
of 64 seconds). This new RT'O is used to set the next time-out event. At a time-out event
also the cwnd is reset to 1 MSS (Maximum Segment Size), and the source enters “slow

start”, etc.

3.2 Coarse Grained Timers

The floating point arithmetic featured in (3.1) - (3.4) would, certainly in 1980’s computers,
be a performance drain, and setting timers and waiting for them to expire would probably
be even worse. The actual mechanism uses only integer arithmetic and does not set timers.

Also, the divisions and multiplications that occur are actually shift operations.

In the first place, the system has 500 msec “clock” which once every 500 msec causes

a clock-event.



The system maintains a variable called {_rtt (int) which is zero as long as there is no
timed packet. When a timed packet is created, {_rit is set to 1, and as long as t_rtt > 1,
t_rit is increased by one at every clock event of the 500 msec clock. Thus, when a timed
packet is acknowledged, ({_rtt —1) x 500 msec is a plausible (though very coarse) estimate

for its round trip time.

The system also maintains a variable {_srtt (int) which represents the estimated round
trip time. {_srtt counts in units of 500/8 = 62.5 msec, therefore one unit in {_rtt corre-
sponds with 8 units in {_srtt. The system also maintains a variable {_rttvar (int) which
represents the estimated standard deviation. t_rtlvar counts in units of 500/4 = 125

msec, therefore one unit in {_rtt corresponds with 4 units in t_rttvar.

When a timed packet is acknowledged, {_srtt and {_rttvar are updated. There is an

auxiliary variable rtt which is set equal to the “returning” value of {_rtt:

rit = 1_rit;

t_srit
3 ;
t_srtt = t_srit + delta;

delta = rtt — 1 —

if t_srtt <0 {t_srit =1;}

delta = |deltal;

t_rttvar_
7’

delta = delta —
t_rttvar = t_rttvar + delta;
if t_rttvar <0 {t_rttvar = 1;}

This completes the update. The reader can verify it somewhat corresponds with (3.1)
- (3.3). Note that the estimated round trip time is always at least 62.5 msec, and the

estimated standard deviation always is at least 125 msec.



There is a variable {_rztcur (int) which (by first approximation) is the new value of

the time-out period, in 500 msec units. It is computed at the end of the update above:

t_srtt

{_rxtcur = + i_ritvar;

The reader can verify this somewhat corresponds with (3.4).

Next, t_rtt is reset to zero (until the next packet is transmitted there is no timed

packet).

There is a counter t_timer[tcp_rexmt] (int, this is the tcp re-transmit timer). The
reason it is part of an array is that there is a number of timers (the delayed ack timer,
etc). When there is no unacknowledged packet outstanding, {_timer[tcp_rexmt] = 0 .
When a packet is sent while {_timer[tep_rexmt] = 0, {_timer[tcp_rexmt] is (usually) set

to the new time-out period length:
t_timer[tep_rexmt] = min(128, max (2, t_ratcur)); (3.5)

When a good acknowledgement arrives at the source, t_timer[tcp_rexmt] is either reset
to zero (if there are no more unacknowledged packets outstanding) or reset to the same

value as in (3.5), if there is still at least one unacknowledged packet outstanding.

At every tick of the 500 msec clock: If t_timer[tep_rexmt] is zero nothing is done. If
t_timer[tecp_rexmt] > 0, t_timer[tcp_rexmt] is decreased by one. If that makes
t_timer[tcp_rexmt] zero, there is a time-out: The oldest unacknowledged packet is retrans-
mitted, t_rztcur is doubled, t_timer[tcp_rexmt] is set as in (3.5) (with the new value of
t_rxtcur), etc. If the new value of t_timer[tep_rexmt] was still positive, no further action

is taken.

We see that after a “good acknowledgement” at least two clockticks of the 500 msec
clock must occur before a time-out can occur. In average this means a delay of 750 msec.

So, as long as there is a “good acknowledgement” at least once every 500 msec, no time-out

10



will occur. If after a “good acknowledgement” 128 clockticks occur (64 seconds!) before
the next “good acknowledgement”, a time-out always occurs, independent of estimated

round trip time or standard deviation.
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