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Abstract

This is a report on, and an analysis of, IP traffic measurements taken

at an ISP which is a Telcordia customer. The measurements by themselves

are a snapshot for comparison in later years. The analysis concentrates

on the behavior of WebSurfers, and leads to information about heavy-tailed

behavior and to a “source model” for behavior of WebSurfers. It is shown

that in principle such source models, together with simulation, lead to in-

formation about maximal permissible loads on links in the Internet. At

this point, simulation technology is becoming a bottleneck: even sophisti-

cated simulation packages can not include enough endstations to generate

realistic loads on links of 45Mbit/sec and up. On theoretical grounds we

had previously predicted that the maximal acceptable load on a link in the

Internet depends on the access bandwidths of the users. This finding was

again confirmed in this project.
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1 Introduction

This paper is an analysis of IP traffic measurements obtained in cooperation

between Telcordia Technologies and an ISP–Customer of Telcordia Technolo-

gies. More specifically, the data were obtained jointly by personel at the ISP–

customer , and Teun Ott and Larry Wong at Telcordia. The analysis of the

data was done at Telcordia. The objective of this project was two-fold:

� To obtain a snapshot of traffic characteristics for comparison in later

years, and

� To build a “source model” (see Sections 7 and 8) that can be used in

simulation studies (see SubSection 9.1).

In addition, this paper contains an example of how such a simulation model

can be used to obtain information about the load to which a specific link can

be loaded before there is noticeable deterioration of quality of service to the

users. This load depends on the access bandwidths of those users.

A number of conclusions is presented in the conclusions section at the end

of this paper.



2 The Data

Measurements were taken in the configuration described in Figure 1. Mea-

surements were taken on two links:

� A link transporting mostly traffic to and from dial–in customers (modem

banks), but also for a number of Frame Relay customers, and

� A link transporting traffic to and from DSL customers.

The measurement tool used was TCPDump. This choice was was based

on the need to obtain full traces of the traffic (see below), and on availability.

Some of the analysis we did could equally well (in fact more easily!) have been

done with a much simpler sniffer which for (say) every 15 minute period gives

little more than packetcount and bytecount per application. The bulk of our

analysis indeed needed and used the full traces.

Some results on the distribution over time of day and application are given

in Section 3

Full traces of time stamped packet headers were obtained for traffic in both

directions. We organized the packet streams in Flows. A Flow is a stream

of packets with the same origination and destination addresses, the same

origination and destination portnumbers, and the same protocol identifiers.

In case of TCP flows, begin and end of a flow are indicated by a SYN and a

FIN or RST (Reset). In case of UDP, we did not try to identify begin and end

of a flow. For UDP “flows” there is at most one “flow” for every combination

of source address, destination address, source port number, and destination

portnumber. The organization in pairs of “Flows” (client ! server and server



! client) allows us to see the interaction between flows of data packets and

acknowledgement packets. More importantly, it allows study of the behavior

of individual customers using specific applications like HTTP (TCP/IP port 80),

NNTP (TCP/IP port 119), etc.

Figure 1: The measurement set–up

In previous measurements we observed that WWW traffic (HTTP, TCP/IP

port 80) consistently took 20 to 80 % of the bandwidth used, with in the peak

load period typically the higher number or more. For this reason we decided



early in this project to concentrate on HTTP.

Section 3 mostly discusses resource use per application, i.e. bytes, packets,

and flows per application. Section 3 is mostly based on the 1999 ISP–customer

data mentioned above, but for comparison we also list some further unspeci-

fied 1998 data. For the 1998 date we give resource use per application, as well

as traffic matrices between applications. In later sections we build a source

model WWW (HTTP) traffic based on the 1999 data. We finish by using the

WWW source model to give a “proof of concept” that source models, and other

knowledge of the customers (in particular bandwidths of the access lines) can

be used to set “safe operating levels” for links in the Internet.

Table 1 gives a description of the datasets used in this paper, when each

dataset was created and it’s size in gigabytes.

Customer Begin Date Begin Time End Date End Time # hours Size (Gb)

Modem 8-19-99 6:08 PM 8-19-99 midnight 6 1.8

Modem 8-23-99 9:00 AM 8-24-99 12:03 PM 27 4.8

DSL 10-12-99 9:53 AM 10-12-99 12:04 PM 2 1.5

Table 1: Dataset descriptions

3 Traffic per Application

This section gives a brief description of the traffic per application (such as Web

Traffic, UseNet News Traffic, etc.). First, we show results on our 1999 mea-

surements at the ISP–customer. In a subsection we then give, for comparison,

results of some further unspecified 1998 measurements.



Tables 2 and 3 give a breakdown of resource use over various applications.

In this paper, we use “application” as essentially synonymous with “IP protocol

(TCP, UDP) and portnumber”. A short list of the more important applications

is given in Appendix B. Both Tables 2 and 3 were derived from data taken on

Tuesday mornings from 10:00 AM to 12:00 noon, but on different days.

port application flows fraction pkts fraction bytes fraction

80 http 53086 0.7074 560949 0.5540 190855625 0.7037

110 pop3 2102 0.0280 46760 0.0462 12823376 0.0473

9900 unknown 100 0.0013 118030 0.1166 11611391 0.0428

2189 unknown 11 0.0001 29010 0.0287 9896677 0.0365

443 https 1562 0.0208 18631 0.0184 5504080 0.0203

1758 unknown 5 0.0001 18237 0.0180 4963358 0.0183

1701 unknown 23 0.0003 21881 0.0216 3646178 0.0134

67 bootps 4 0.0001 4650 0.0046 2877552 0.0106

4753 unknown 2 0.0000 1457 0.0014 2113868 0.0078

25 smtp 366 0.0049 5979 0.0059 1857303 0.0068

119 nntp 72 0.0010 5164 0.0051 1849571 0.0068

1568 unknown 2 0.0000 19582 0.0193 1825835 0.0067

20 ftp 600 0.0080 6264 0.0062 1622595 0.0060

53 dns 9196 0.1225 10758 0.0106 1450240 0.0053

5190 unknown 209 0.0028 3461 0.0034 1419872 0.0052

other 7703 0.1026 141732 0.1400 16880864 0.0622

total 75043 1012545 271198385

Table 2: top 15 modem applications



port application flows fraction pkts fraction bytes fraction

80 http 115795 0.6083 1640319 0.3010 911521756 0.3282

20 ftp 1756 0.0092 459645 0.0843 405847778 0.1461

1080 unknown 16 0.0001 350038 0.0642 327333544 0.1179

119 nntp 184 0.0010 279524 0.0513 245294424 0.0883

5501 unknown 156 0.0008 246739 0.0453 240796730 0.0867

25 smtp 1352 0.0071 113079 0.0207 64424787 0.0232

6699 unknown 14 0.0001 51182 0.0094 58123303 0.0209

554 rtsp 952 0.0050 95878 0.0176 50850895 0.0183

1755 unknown 7 0.0000 50593 0.0093 47917917 0.0173

110 pop3 12447 0.0654 141732 0.0260 33368959 0.0120

1725 unknown 6 0.0000 95651 0.0175 32923165 0.0119

443 https 5881 0.0309 82682 0.0152 27362725 0.0099

139 netbios 156 0.0008 31987 0.0059 23635870 0.0085

2057 unknown 5 0.0000 14170 0.0026 19901692 0.0072

5190 unknown 170 0.0009 43058 0.0079 17077765 0.0061

other 51447 0.2703 1753933 0.3218 270711813 0.0975

total 190344 5450210 2777093123

Table 3: top 15 dsl applications
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Figure 2: Applications seen in a 24+ hour modem customers

Figure 2 shows resource use by modem customers of the more important

applications seen in the 27 hour period. The bottom curve gives resource

use by HTTP alone. The next higher curve gives resource use by HTTP and

NNTP together. The next higher gives resource use by HTTP, NNTP, and all

portnumbers above 1000. The upper curve gives total resource use.

We do not have a similar figure for DSL customers: The data rate for DSL

customers, and our available disk space, allowed us to store only a few hours

of data. This is an instance where a sniffer that stores only certain counts is

more useful than a device like TCPDump.



Tables 2 and 3 and Figure 2 indicate that HTTP and NNTP (plus HTTPS)

still are the dominating applications. This evidence is not quite as strong as

it was in some previous measurements. In the “modem customers” Table 2

we see that for the period at hand HTTP is only slightly more than 70 % of

the bandwidth (plus 2% for HTTPS), and that NNTP has become negligible.

However, in the “modem customers” Figure 2 we see that in the peak hour,

HTTP and NNTP together still make up over 80 % of the bandwidth, and that

at the peak period NNTP is not negligible.

The “DSL customers” Table 3 indicates that in the period at hand HTTP and

NNTP together make up only about 43 % of the traffic. It is very unfortunate

we did not succeed in obtaining a load distribution over the day for DSL traffic.

It is possible the decrease of HTTP is due to the measurement period chosen.

6% of the traffic (in bytes) in Table 2 is “other”, and 10% of the traffic in

Table 3 is “other”. This may seem worrysome amounts. We will see that our

1998 data show similar amounts, and in 1 case a large amount traffic for one

“unexpected” application. This shows the “other” category probably can not

be decreased.

Thus, the conclusion that by knowing the behavior of HTTP and NNTP one

“knows” the behavior of the traffic still seems warranted, though possibly with

less confidence than in 1998.

It must be noted that the use of TCPDump, or of any other measurement

device that makes full traces of the traffic, is overkill, or even countereffective,

when the goal is only to obtain results as described in this section. When only

results as reported in this section on byte count and packet count are needed,

a “sniffer” which for every packet only increases a small number of counters

(say packet count, byte count for the application of the packet and for a few



other counters, that may depend on e.g. the source and destination addresses

in the packet) but does not keep the packet header is preferable: It would not

have the hard disk storage problem with high bandwidth links we had with

the DSL link.

A simple “sniffer” as just described might not be able to provide counts of

flows per application, and would certainly be unable to provide the type of

results we will see in later sections of this paper.

3.1 Some 1998 Data

In this subsection we show data on some 1998 IP traffic measurements, for

comparison with the 1999 data that are the heart of this paper. The 1998

measurements were taken at a further unspecified location, different from the

1999 data. The 1998 “modem traffic” is data on dial-in customers, but without

frame relay customers mixed in. The 1998 “T1 traffic” is of a different mix of

customers. The data are shown in Tables 4 and 5.

In the 1998 measurements we saw that WWW traffic, dependent on the

time of the day, took 20 to 75% of the bandwidth, and WWW and NNTP (Net-

work News Transport Protocol) together, depending on the time of the day,

took 70 to 95% of the bandwidth, with in the peak load periods mostly the

higher numbers. In the 1999 data this trend continues, with possibly some-

what less domination by HTTP and NNTP, and a significant decrease in NNTP.

It is possible that people reading NetNews now use HTTP.



port application bytes % pkts % flows %

20 FTP 493755 .08 933 .05 110 .09

21 FTP 100734 .02 1193 .07 57 .04

25 SMTP 5099592 .86 12188 .67 316 .25

53 DNS 2633703 .44 16537 .91 14559 11.42

80 WWW-HTTP 333377055 56.24 868026 47.69 86347 67.76

81 HOSTS2-NS 194463 .03 412 .02 54 .04

110 POP 12849906 2.17 62470 3.43 10556 8.28

113 AUTH-113 7210 .00 104 .01 60 .05

119 NNTP 70193635 11.84 125178 6.88 3507 2.75

123 NTP 8178 .00 87 .00 21 .02

137 NetBios 421451 .07 3861 .21 147 .12

161 SNMP 304310 .05 3306 .18 69 .05

443 HTTPS 12116002 2.04 36478 2.00 1351 1.06

514 Syslog 361469 .06 3552 .20 1 .00

1058 NIM 1721732 .29 17039 .94 69 .05

1352 Lotus-Note 4711701 .79 12047 .66 16 .01

1431 RGTP 4131170 .70 5597 .31 18 .01

1650 NKD 1936091 .33 8580 .47 16 .01

2916 Elvin 392235 .07 6063 .33 6 .00

5151 ESRI SDE 110961990 18.72 483770 26.58 92 .07

6667 IRC 2431933 .41 19437 1.07 38 .03

other other 25216040 4.25 88727 4.87 9870 7.75

N/A no port 3804816 .64 46085 2.53 320 .25

total 529730951 1820214 127437

Table 4: 1998 Traffic through dial–up modems



port application bytes % pkts % flows %

20 FTP 896539 1.05 2524 0.91 55 0.19

21 FTP 23449 0.03 391 0.14 22 0.07

25 SMTP 4608025 5.40 14542 5.22 1169 3.98

53 DNS 201793 0.24 1761 0.63 835 2.85

80 WWW-HTTP 75782717 88.78 249460 89.57 26591 90.64

110 POP 567201 0.66 1292 0.46 20 0.07

113 AUTH-113 6132 0.01 136 0.05 134 0.46

137 Net-Bios 26438 0.03 251 0.09 30 0.10

161 SNMP 128 0.00 2 0.00 1 0.00

443 HTTPS 164795 0.19 600 0.22 51 0.17

520 Route 780 0.00 15 0.01 1 0.00

1352 Lotus-Note 1814956 2.13 3114 1.12 111 0.38

other other 1210030 1.42 3685 1.32 210 0.72

N/A no port 650 0.00 109 0.04 108 0.37

total 85364206 278493 29336

Table 5: 1998 Traffic on T1



Table 6 gives the matrix of traffic intensities in bytes between the various

applications (ports) in similar 1998 modem bank measurements. We did not

do this analysis for our 1999 data. The sum of all entrees is 100%. Blank

entrees indicate an absolute zero, while zeros indicate a small positive value

rounded down to zero. Thus, in our modem data 48.28% of all bytes observed

were going from a port 80 (WWW) on some source to a port not in our list of

frequently observed portnumbers, on some destination. These of course are

WWW packets from a server (port 80) to a client (any port). Only 7.736% of the

bytes in the same data went from a “other” port to port 80. These of course

are WWW packets from a client to a server. Table 7 gives similar information

on a per packet basis. Here, the corresponding percentages for port 80 are

23.32 and 24.18. Clearly, Packets from a Web Server to a client tend to be

large, while packets from a client to a Web Server tend to be small (mostly

acknowledgement packets). Table 8 gives similar information on a per flow

basis.

        

     

    

          

  

                       20          21         25         53          80        110      119        137        161        443       514       1058      1352      1431    1650     2916      6667      5151    other    NA

     20                                                                                                                                                                                                                                                       0.078       

     21                                                                                                                                                                                                                                                       0.01       

     25                                                                                                                                                          0.001                                                                                    0.072       

    other     0.005     0.007    0.787    0.178    7.736     0.354    0.631                  0.025    1.265                   0.086     0.73      0.02      0.054    0.031    0.116                  4.254       

     53                                                                                                       0                                                 0.001        0           0           0           0                                   0.264       

     80                                                                                                                                                          0.101     0.031     0.03    0.024     0.005                               48.28       

    110                                                                                                                                                         0.008     0.002       0           0                                                1.802       

             119                                                                                                                                                         0.103                                               0                                   11.1       

    137                                                 0                                                0.071                                                                                    

    161                                                                                                                                                                                                                                                      0.026       

    443                                                                                                                                                         0.001                                                                                    0.778       

    514                                                                                                                                           0.061                                                               

    1058                                0.001       0        0.019     0.001    0.005                                  0                                                                                                                   0.084       

   1352                                                0        0.006        0                                                                                                                                                                        0.063       

    1431                                                0        0.005        0                                                                                                                                                                        0.676       

   1650                                                0        0.003        0                                                                                                                                                                        0.273       

   2916                                                0           0                         0                                                                                                                                                           0.035       

   6667                                                                                                                                                                                                                                                     0.294       

     NA                                                                                                                                                                                                                                                     0.004    0.642                                     

   5151                                                                        0.001                                                                                                                                                      18.72

Table 6: 1998 Modem Traffic Matrix, Bytes.



                    20         21         25        53          80         110       119       137        161       443       514       1058      1352      1431    1650      2916      6667     5151    other        NA

        20                                                                                                                                                                                                                                                    0.031           
        21                                                                                                                                                                                                                                                    0.033          

        25                                                                                                                                                      0.002                                                                                     0.316          

         53                                                                                                    0                                                0.001         0       0.001         0         0                                    0.384          

        80                                                                                                                                                      0.049     0.017    0.016     0.009     0.003                              23.32          

       110                                                                                                                                                     0.007     0.001         0       0.001                                             1.645          

       119                                                                                                                                                     0.024                                               0                                    3.669          

       137                                              0                                                0.211                                                                                                                        

       161                                                                                                                                                                                                                                                   0.091          

       443                                                                                                                                                     0.001                                                                                     0.912          

       514                                                                                                                                        0.195                                                                                          

      1058                             0.002     0.001    0.051    0.005    0.025                               0.001                                                                                                               0.428          

      1352                                              0        0.019    0.001                                                                                                                                                                    0.254          

      1431                                           0.001    0.016        0                                                                                                                                                                       0.203          

      1650                                              0        0.009    0.001                                                                                                                                                                    0.233          

      2916                                              0        0.002                    0                                                                                                                                                           0.175          

      6667                                                                                                                                                                                                                                                  0.52          

     other    0.02     0.033     0.35      0.52     24.18     1.766     3.159                 0.091      1.09                  0.438     0.405    0.102    0.237     0.158    0.548                 4.875          

                      NA                                                                                                                                                                                                                                                  0.012     2.532

      5151                                                                     0.003                                                                                                                                                       26.57               

Table 7: 1998 Modem Traffic Matrix, Packets.

Appendix B contains a list of all applications that occur in the Tables 4 and

5, and a few more that were prominent in other recent datasets.

The application ESRI SDE, while prominent in the 1998 Table 4, was not

a good candidate for further investigation, because its traffic seemed to be

generated by just a few users. While there were about 20 to 25 IP addresses

using this portnumber (talking to each other), we believe that the total number

of users is smaller. Our understanding is that the IP addresses of “dial–in

users” we see are temporary IP addresses, assigned when the users dial in

and freed up when the users closes the dial–in connection. This is an example

of the care that is needed in interpreting measurements. This seems a good

reason not to worry about the “other” categories in the 1999 data in Tables 2

and 3.



                  20          21         25         53         80         110       119       137        161       443       514      1058      1352      1431     1650      2916     6667     5151     other       NA

        20                                                                                                                                                                                                                                                    0.043          

        21                                                                                                                                                                                                                                                    0.024          

        25                                                                                                                                                       0.002                                                                                    0.116          

        53                                                                                                 0.003                                             0.012    0.003    0.005     0.002     0.001                              4.847          

        80                                                                                                                                                       0.075    0.027     0.02      0.009     0.001                              32.42          

       110                                                                                                                                                      0.005    0.001     0.001    0.001                                            1.847          

       119                                                                                                                                                      0.004                                             0.001                              1.377          

       137                                           0.002                                             0.11                                                                                                                        

       161                                                                                                                                                                                                                                                   0.027          

       514                                                                                                                                        0.001                                                                                          

      1058                            0.002     0.012    0.078     0.005    0.004                               0.002                                                                                                               0.004          

      1352                                          0.003    0.027     0.001                                                                                                                                                                    0.002          

      1431                                          0.005    0.018     0.001                                                                                                                                                                    0.001          

      1650                                          0.002    0.009     0.001                                                                                                                                                                    0.004          

      2916                                          0.001    0.002                  0.001                                                                                                                                                       0.001          

      6667                                                                                                                                                                                                                                                  0.015          

      5151                                                                     0.046                                                                                                                                                      0.027              

     other   0.043     0.02     0.127     6.526    35.07    6.376    1.365                   0.027    0.544                 0.002    0.002     0.001     0.004    0.001    0.015                 7.745          

        NA                                                                                                                                                                                                                                                  0.022     0.251

       443                                                                                                                                                     0.002                                                                                     0.513          

Table 8: 1998 Modem Traffic Matrix, Flows.



4 Detailed Traces of WWW Flows

We use two ways to make it easier to visualize the behavior of a WWW session.

One is to show the time period over which TCP connections are in existence.

We call these “existence plots”. An example is Figure 3. The other is to give for

TCP connections the cumulative number of bytes as function of time. We call

these “activity plots”. An example is Figure 4. We see that TCP connections

can alternate between activity and inactivity, while remaining in existence.

These examples Figures 3 and 4 are not for actual customers: they were

obtained by the second author of this report accessing the WWW, and moni-

toring the resulting packet flows using TCPDump. The following series of URLs

was visited:

� http://www.yahoo.com

� photography

� photographers

� masters

� robert capa

� robert capa photographs

� next page

� exhibitions

� kenro izu
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Figure 3 shows various TCP connections come into existence and be ter-

minated. We see that TCP connections are in pairs: one from the server to

the client (! ) and one from the client to the server ( ). The Figure also gives

the address of the server and the portnumber on the server and on the client.

Since this is HTTP traffic the portnumber on the server often, but not by a long

way always, is 80. For example, we often see portnumber 53 (Domain Name

Server), this means the client is trying to get the address of the server for a new

URL. Other portnumbers also occur. Those TCP connections are not active all

the time. Figure 4 depicts the activity of the various TCP connections: For ev-

ery packet seen, it gives both timestamp and cumulative bytecount (including

headers) until that packet. We see that TCP connections alternate between

activity (steep increase of the activity plot) and inactivity (the activity being

essentially flat).

Figures 3 and 4 are for an “HTTP 1.1” transaction, obtained using Internet

Explorer, version 6.0 (which has HTTP 1.1). This means that for a specific

WWW session in a client there is no hard upper limit on the number of si-

multaneous pairs of simultaneous TCP connections that can exist to a specific

server (but the recommended upper limit is 2 TCP connections per server),

and that there is “persistence”: a TCP connection is kept in existence when

not in use, in case another file from the same server needs to be transported.

The TCP connection usually is discarded when the WWW session in the client

accesses a new server. TCP connections for advertisements seem to often re-

main in existence even when the client accesses a new server. Figure 4 shows

that quite often multiple TCP connections are simultaneously active.

A result of this simultaneous activity is that if the throughput bottleneck of

those flows is in the MaxWindow (TCPWindow) or in the “backbone” network,
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192.4.5.12:53<-39837
192.4.5.12:53->39837
192.4.5.12:53<-39838
192.4.5.12:53->39838
192.4.5.12:53<-39839
192.4.5.12:53->39839

204.71.200.74:80<-34107
204.71.200.74:80->34107
209.249.123.148:80<-34108

206.57.24.84:80<-34109
209.249.123.148:80->34108

206.57.24.84:80->34109
209.249.123.148:80<-34110
209.249.123.148:80->34110

128.96.60.13:742<-33141
128.96.60.13:742->33141
192.4.7.23:111<-39840
192.4.7.23:111->39840
192.4.7.23:2049<-39840
192.4.7.23:2049->39840
192.4.7.23:111<-39841
192.4.7.23:111->39841
192.4.7.23:32827<-39841
192.4.7.23:32827->39841
192.4.7.23:32827<-796
192.4.7.23:32827->796
192.4.7.23:111<-39842
192.4.7.23:111->39842
192.4.7.23:2049<-824
192.4.7.23:2049->824

204.71.200.202:80<-34111
204.71.200.202:80->34111
128.11.19.100:80<-34112
128.11.19.100:80->34112
206.57.24.84:80<-34113
206.57.24.84:80->34113
208.234.1.75:80<-34114
208.234.1.75:80->34114

208.234.1.75:80<-34115
208.234.1.75:80->34115

208.234.1.75:80<-34116
208.234.1.75:80->34116
208.234.1.75:80<-34117
208.234.1.75:80->34117

208.234.1.75:80<-34118
208.234.1.75:80->34118
208.234.1.75:80<-34119
208.234.1.75:80->34119
208.234.1.75:80<-34120
208.234.1.75:80->34120

Figure 5: Netscape, HTTP 1.0, existence

the WWW session gets higher throughput. If the bottleneck is in the access

line, these multiple parallel TCP connections are competing with each other

and having multiple parallel connections does not really make sense.

Figures 5 and 6 similarly give existence and activity for “the same” session,

but now using Netscape version 4.61 and HTTP 1.0.

These figures were obtained pointing the Netscape browser at the same

sequence of URLs as those in Figures 3 and 4.

Netscape has the newer version of HTTP 1.0, where at most 4 simultaneous

TCP connections can be open between a WWW session in a client and a specific

server, and those up to four connections have “keepalive” (i.e., persistence)

until the client moves to another server. We see that the activity lines are

fairly similar. There are differences in DNS accesses, these may be due to luck
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Figure 6: Netscape, HTTP 1.0, activity

(or the opposite) in address caching.

Figure 7 gives the activity for an actual customer. This customer happens

to be a dial–in customer using HTTP 1.0.

We observe that this specific customer has simultaneously active connec-

tions, but not as pronounced as happened in our measurements at Telcordia.

We also see that this actual customer does not get the high bandwidth (steep

almost vertical stretches in the activity curves) we observed in our worksta-

tion and PC at Telcordia. This must be due to the fact that our (Telcordia’s)

internal network is 10 Mbit/sec and up (mostly ethernet), and the access line

from Telcordia to its ISP also is about 10 Mbit/sec (7 � T1). Modem customers

have bandwidths no higher than 64 Kbit/sec. In the next section we will see

that Frame Relay customers have at most about 250 Kbit/sec, and that while

a few DSL customers have bandwidths over 1 Mbit/sec, almost all have band-
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Figure 7: Actual Customer activity plot

widths below 700 Kbit/sec (even in the “downward” direction, toward the DSL

customer).



5 Access Line Speeds

Plots as in Figure 7 show how fast a file was moved from the client to the

server, and thus give an indication of (in fact a lower bound for) the bandwidth

of the access line of the customer (in the direction from network to customer).

When that access line is not the bottleneck, the lower bound is a very low

estimate, and also when two or more files are transported in parallel (over

competing TCP connections) the lower bound becomes a very low estimate.

Such estimates can be significantly improved on, for example as follows:

For a given length of time, say T seconds, find that time interval of length T

for which the sum of all amounts of traffic the client received from all servers

together is maximal. Let that amount be M bytes. Then, 8M

T
is a plausible

estimate for the access linespeed of the client (bits/sec, in the “downward”

direction). A problem is of course the choice of length T . This depends on

the estimated linespeed. A sensible choice seems to be to restrict attention

to clients that at some time received a file of at least 50 KBytes, and take for

T half the time it took to download that file (i.e., T depends on the client).

Instead of all intervals of length T we can restrict ourselves to intervals of the

form (x; x + T ], where x is incremented by values of the order of T=10.

In preparing this paper we did not do this more sophisticated analysis.

Instead we took all files and subtracted the packet sizes of the first seven

packets to take care of windowing effects. If the resulting file size was 50

KBytes or larger we divided the new file size by the time it took to move the

file (not including the first seven packets). This results in a distribution of

speeds over files (all files larger than 50 KBytes). The taildistributions are

given in Figures 8 (for dial-in data) and 9 (for DSL data). Figure 10 gives both
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distributions in one figure.

While the estimated speeds are below linespeeds, for higher speeds they

must give a reasonably good picture. Figure 8 shows that many of the “dial–

in” customers have linespeeds well over 100 Kbits/sec. This is explained by

the fact that there are Frame Relay customers among the dial–in customers.
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6 HTTP, Methods and Gets

This section concentrates on the HTTP aspects of the traffic. Whenever the

client (computer) makes a request to the server (computer), we call this a “hit”.

This name is somewhat misleading: The request can indeed be caused by the

customer typing in a URL, or clicking on an item. It can, however also be the

result of an “autonomous” action on the part of the browser. Later we will

distinguish between “human clicks” and “computer clicks”. First we describe

the breakdown between HTTP 1.0 and HTTP 1.1.

Table 9 gives the number and percentage of HTTP 1.0 requests v.s. HTTP

1.1 requests (“clicks”) for modem customer for a 24 hour period. These are

“human clicks” as well as “computer clicks”.

HTTP hits fraction

1.0 470392 .50790

1.1 455760 .49210

total 926152

Table 9: HTTP 1.0 vs 1.1 Modem customers, 24 hour period

Table 10 gives the number and percentage of HTTP 1.0 requests v.s. HTTP

1.1 requests for DSL customers for a 2 hour period.

HTTP hits fraction

1.0 68111 .33567

1.1 134797 .66433

total 202908

Table 10: HTTP 1.0 vs 1.1 DSL customers 2 hour period



Table 11 gives the numbers and percentages of HTTP 1.0 requests v.s.

HTTP 1.1 requests for dial–in customers, for a 6 hour run on a Friday night.

HTTP hits fraction

1.0 122,905 .738

1.1 43,606 .262

total 166,511

Table 11: HTTP 1.0 vs 1.1 Modem

We see that DSL customers (not surprisingly!) have more HTTP 1.1 than

dial–in customers. We also see that during the evening there are fewer HTTP

1.1 users than in average over the day. Apparently, “Friday evening Surfers”

have older equipment than “Daytime Surfers”.

When a “click” occurs as above, i.e. when the client computer makes a

request to the server computer, the click or request is of one of a number

of “methods”. See IETF RFC 1945 and RFC 2068 for more details on HTTP

methods. It must be noted that the client that makes the request can be

either a human customer, or the browser on behalf of the human customer.

When the human customer explicitly clicks on a URL, we call this a “human

click”, or “human request”. When the browser, “on behalf of the human”

requests a file (say some graphics) we call this a “computer click” or “computer

request”. Later we will discuss how to guess, from the data, which clicks are

“human” and which are “computer”. Tables 12 and 13 give the frequencies of

the various methods for two different time periods. Both tables are for dial–

in customers. In these tables we do not differentiate between “human” and

“computer” generated requests.



HTTP method hits fraction

POST 793 .01976

GET 39211 .97753

HEAD 84 .00209

PUT 24 .00059

DELETE 0 0

TRACE 0 0

CONNECT 0 0

TOTAL 40112

Table 12: HTTP method, 2 hours on a Tuesday morning

HTTP method hits fraction

POST 2707 .01574

GET 168433 .97945

HEAD 620 .00360

PUT 206 .00119

DELETE 0 0

TRACE 0 0

CONNECT 0 0

TOTAL 171966 0

Table 13: HTTP method, 6 hours on a Friday night



6.1 Gets

We see that “Get” is by far the most frequently occurring HTTP Method. Hence-

forth we only consider “Gets”. There is a large number of different types of

“Gets”:

� asf. Active Streaming Format for multimedia. The ASF specification

defines a structure to combine miscellaneous file types such as audio,

video, scripts, ActiveX controls and HTML documents. See

http://www.microsoft.com/mind/0997/netshow/netshow.htm for details.

� asp. Active Server Page. Webpages that utilize ASP technology end with

the extension .ASP, rather than the common .HTML extension. These

pages contain code which pulls information from database files and then

displays them to your browser. ASP pages are similar to CGI scripts, but

typically contain Visual Basic or Jscript code.

� asx. ASX Files are text files that act as a link from a Web page to an ASF

file on a (HTTP or NetShow) server. See

http://www.microsoft.com/netshow/howto/asx.htm for details.

� cd. When a customer changed directories. This is indicated when the

last character in the GET method string is a ”/”. i.e. the URL

http://dir.yahoo.com/Arts/ would bring the user to yahoo’s arts and hu-

manities page.

� cd init. When a customer goes to a site’s root directory ”/”. i.e. going to

the URL ”www.yahoo.com” goes to the yahoo root directory.

� gif. A picture file format created by CompuServe.



� jpg. A picture file format created by the Joint Photographic Experts

Group.

� mov. Apple Computer QuickTime video file format. Mov is an abbrevia-

tion for Movie. See http://www.apple.com/quicktime/ for details.

� mp3. MP3 is an open audio compression codec that was developed by the

Motion Picture Experts Group (MPEG). The abbreviation ”MP3” stands

for MPEG Layer 3. MP3 is currently the de facto Internet audio standard.

MP3 audio is near-CD quality and several hundred thousand song files

are currently posted online. See http://www.mp3.com for details.

� pl. Perl. Perl is a high-level programming language derived from C, sed,

awk, and the Unix shell. See http://www.perl.com/ for details.

Table 14 gives a distribution of the filesizes that are transported from the

server to the client in response to the various types of “Gets”. In this table

we do not yet worry about which gets are human generated, and which are

computer generated. The data in Table 14 is for dial–in customers.



get type events frac/ev bytes ave var s.d coef of var

asf 5 0.0002 94476 18895.2 1.34021e+09 36608.8 3.75378

asp 93 0.0028 706459 7596.33 1.14556e+08 10703.1 1.98523

asx 6 0.0002 3213 535.5 40864.6 202.15 0.142504

cd 525 0.0158 5336750 10165.2 3.18113e+08 17835.7 3.07855

cd init 717 0.0216 7328936 10221.7 2.3023e+08 15173.3 2.20352

cgi 5820 0.1755 42646805 7327.63 1.25908e+09 35483.6 23.4492

class 125 0.0038 509720 4077.76 5.03964e+07 7099.05 3.03079

css 177 0.0053 155763 880.017 3.23005e+06 1797.24 4.17088

gif 18406 0.5550 41318858 2244.86 5.56819e+07 7462.03 11.0493

giv 3 0.0001 1251 417 288 16.9706 0.00165623

htm 2008 0.0605 16435269 8184.89 2.64846e+08 16274.1 3.95337

jpg 5067 0.1528 34131328 6736 1.71488e+08 13095.4 3.77946

js 135 0.0041 197520 1463.11 9.09118e+06 3015.16 4.24684

mov 3 0.0001 530772 176924 4.7187e+10 217226 1.50747

mp3 14 0.0004 307733 21980.9 1.12064e+09 33476 2.3194

pl 13 0.0004 187743 14441.8 2.83534e+08 16838.5 1.35945

txt 46 0.0014 281536 6120.35 6.85607e+08 26184.1 18.303

TOTAL 33163

Table 14: HTTP GET method breakdown, all



6.2 Human Gets

For simulation purposes, we decided to differentiate between “human” re-

quests and “computer” requests. We classified all non-jpeg and non-gif gets as

human clicks. This decision was based on manual analysis of the TCPDump

traces in the Figures 3 – 6, and of about 10 other traces from our data. Of the

jpeg and gif gets, we classify those that result in a file from server to client of

less than or equal to 20,000 bytes as “computer clicks”, but those that result

in a larger file from server to client as a “human click”. The reason for this

choice is that quite often a number of “thumbnail” graphics files are requested

automatically by the browser. Experimentation by one of the authors of this

paper backs up the limit of 20 KBytes.

Thus, a “human get” results in transport of one file from the server to the

client that the human customer explicitly asked for, plus a number of other

files that the browser requests (hopefully “on behalf” of the human customer,

but actually often against that human user’s desire(!), more on behalf of an

advertiser).

Table 15 gives the distribution of types and resulting “bunch” sizes for “Hu-

man Gets”. For example, 2008 times a human explicitly asked for an htm or

html file. These htm files, plus the files that the browsers then autonomously

asked for, represent a total of 30,343,246 bytes (including packet headers).

Comparing Tables 14 and 15 we see that while there were a total of 18406

requests for a gif file, only 229 of these were above 20KBytes. The 717 cd init

files in Table 14 together contained 7,328,936 bytes, but Table 15 shows that

these 717 cd init human gets, together with the computer gets that followed

them, represented 10,462,262 bytes.



get type events frac/ev bytes ave var s.d coef of var

asf 5 0.0005 94476 18895.2 1.34021e+09 36608.8 3.75378

asp 93 0.0090 1299324 13971.2 4.66281e+08 21593.5 2.3888

asx 6 0.0006 4524 754 326938 571.785 0.575073

cd 525 0.0508 8547962 16281.8 7.10958e+08 26663.8 2.68187

cd init 717 0.0693 10462262 14591.7 4.59588e+08 21438 2.15852

cgi 5820 0.5628 62906977 10808.8 1.36331e+09 36923 11.6693

class 125 0.0121 1019275 8154.2 2.8106e+08 16764.9 4.22704

css 177 0.0171 840959 4751.18 1.17513e+08 10840.4 5.20575

gif 229 0.0221 11438223 49948.6 2.89771e+09 53830.3 1.16147

giv 3 0.0003 92898 30966 8.80787e+08 29678.1 0.918546

htm 2008 0.1942 30343246 15111.2 6.62357e+08 25736.3 2.90065

jpg 423 0.0409 20045338 47388.5 1.00251e+09 31662.4 0.446419

js 135 0.0131 1595535 11818.8 3.96683e+08 19916.9 2.83987

mov 3 0.0003 530772 176924 4.7187e+10 217226 1.50747

mp3 14 0.0014 342355 24453.9 1.16167e+09 34083.2 1.9426

pl 13 0.0013 197506 15192.8 2.95238e+08 17182.5 1.27908

txt 46 0.0044 373059 8109.98 6.98899e+08 26436.7 10.6261

all 10342 na 150134691 14517 1.1937e+09 34549.9 5.66424

Table 15: HTTP human GET method breakdown, “bunches”



7 Customer Behavior

In this section we describe “customer behavior”, of course specialized to HTTP.

This will be in terms of thinktime distributions, filesize distributions, etc. for

customers surfing the web.

In the remainder of this section we will describe the empirical distribu-

tions we found. We used the data for dial–in customers to obtain “theoretical

distributions” that later were used in simulations. We decided not to do an

extremely refined analysis, but to just capture what we think are the main

aspects of the behavior.

The model we would have liked to achieve is a “thinktime - bunch - think-

time - etc” model: The “real” customer (the human) thinks, then requests a

file. That file, when it arrives at the client (the client computer, let’s call it

the browser), causes the browser to request a few more files. Finally, transfer

stops, and the “real” customer (the human) starts thinking again. If the data

had born out this model, we could have characterized the model by thinktime

distribution (time from end of transfer until next human click), and entities

such as the distribution of the initial filesize (requested by the human), and

distributions of the number and sizes of the later files in the bunch, and the

distribution of the total bunch size.

Such a model would have the advantage of being inherently closed loop:

When the network gets congested, it takes longer to transport a “bunch” (based

on the TCP protocol), and the amount of service the customer gets decreases

when congestion increases, and even decreases sufficiently fast.

Such a model would of course be an oversimplification: In reality, thinktime

distributions change when congestion increases and effective transfer rates



decrease. Quite possibly, also filesize distributions change, and certainly at

some point the customer reneges (walk away to have coffee, or to write an

angry letter, or logs off).

The reason we could not use this oversimplified model is that, certainly for

the “dial–in” customers, different bunches overlap.

Ideally, the human customer waits until after transmission of the previous

bunch has finished, before generating the next “human click”. This would gen-

erate a positive thinktime. It is also satisfactory if the next human click causes

all TCP connections from the previous “bunch” to be closed. This would, some-

what misleadingly, be interpreted as a zero thinktime.

However, moderately often, the filetransfer caused by the next human click

is (partially) simultaneous with a file transfer from the previous bunch.

In order to model this (somewhat roughly) we organize human clicks into

three classes, or types.

� type 1 These are human clicks that come after the end of transmission

of the previous bunch, or at least cause immediate termination of all

remaining TCP connections from previous bunches.

� type 2 These are human clicks, after which at least one previous HTTP

TCP connection remains in existence, and the new server is different from

those of all those persistent older connections.

� type 3 These are human clicks, after which at least one previous TCP

connection remains in existence, and the new server has one of those

persistent older connections.



The next subsection gives information about frequencies of the various

types of human clicks.

7.1 Types of Human clicks

Tables 16 and 17 give total numbers and fraction of type 1, 2, 3 “human clicks”

for respectively dial–in customers and DSL customers.

type hits fraction

type1 6995 .67637

type2 1206 .11661

type3 2141 .20702

total 10342

Table 16: Total number of types 1, 2 and 3, dial–in

type hits fraction

type1 45224 .98939

type2 244 .00534

type3 241 .00527

total 45709

Table 17: Total number of types 1, 2 and 3, DSL

Tables 18 and 19 give numbers and frequencies of transitions between

types for dial–in customers,

We see that 84% of all type 1 human clicks is followed by another type 1

human click, and .94% of all type 1 human clicks is the last human click in

the HTTP session.



goto type1 goto type2 goto type3 goto end

type1 5876 515 538 66

type2 442 579 177 8

type3 588 112 1426 15

Table 18: Transitions between human get types, raw, dial–in

goto type1 goto type2 goto type3 goto end

type1 0.8400 0.0736 0.0769 0.0094

type2 0.3665 0.4801 0.1468 0.0066

type3 0.2746 0.0523 0.6660 0.0070

Table 19: Transitions between human get types, fractions, dial–in

Tables 20 and 21 give numbers and frequencies of transitions between

types for DSL customers.

goto type1 goto type2 goto type3 goto end

type1 44623 171 167 263

type2 165 73 1 5

type3 166 0 72 3

Table 20: Transitions between human get types, raw, dsl

We see that while for “dial–in” customers only 68% of all human clicks are

type 1, for DSL customer that percentage is 99%. Thus, the conceptual model

we would have liked is reasonable for DSL lines, but in case of dial–in lines the

transmission is sufficiently slow that human do not wait for completion, and

make a new request while the old file (or advertisement) is still rolling out. For

dial–in customers, there seems to be a mild degree of “diagonal domination” in

the transition matrix Table 19. This may indicate that certain customers tend



goto type1 goto type2 goto type3 goto end

type1 0.9867 0.0038 0.0037 0.0058

type2 0.6762 0.2992 0.0041 0.0205

type3 0.6888 0.0000 0.2988 0.0124

Table 21: Transitions between human get types, fractions, dsl

to stick with one type of “human click”.

Tables 19 and 21 show that the overwhelming majority of “human clicks”

is not the last human click in the HTTP session. In other words, the total

number of “human clicks” or “bunches” in an HTTP session usually is very

large.
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Figure 11: human think characteristics, modem and dsl

7.2 Think Times

Figures 11 and 12 give the distribution function (F (x) versus x) of the “human

think times” preceding a type 1 human click, for “dial–in” as well as “DSL”

customers, first over the whole range and then then up to one second. Because

Figure 11 is not informative, Figures 13 and 14 give the same data as log(1 �

F (x)) versus x, and Figure 15 again gives the same information, but now in a

plot of log(1� F (x)) versus logx.

Figure 16 repeats Figure 15 for dial–in customers only, with an indication

of the distributions we use to simulate the data. Figure 17 repeats repeats

Figure 12 for dial–in customers only, with an indication of the distributions

we use to simulate the data.

Figures 11, 13, 14 and 15 indicate that apart from the first few seconds,
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the think time distributions for “dial–in” and “DSL” customers are quite close.

In the simulations we use the data for the “dial–in” lines. Figure 12 shows

that quite often (almost 10% of the time) dial–in customers request a new file

before the previous “bunch” is completed. The same figure shows that DSL

customers hardly ever do this. This strongly suggests that the zero think-

times of dial–in customers are due to impatient customers hitting the “reload”

button. DSL customers have faster downloads and receive the whole “buch”,

without getting impatient. This agrees with the findings in Tables 16 – 21.
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Figure 17: Human think time less then one second, dial–in



Figures 13 and 14 indicate that thinktimes have a distribution with an

exponential tail: after slightly less than 100 seconds, the “hazardrate” of the

human customer requesting a file becomes constant. We did not utilize this

fact in our simulation.

Based on the data, we decided, in the simulations, to generate human think

times for type 1 human clicks as follows:

From various regression analyses we obtain

p0 = :097; c1 = :2495; c2 = :0; c3 = :647 : (7.1)

We compute U � by

U� = 1�

�
c1

c3
1+c3 e

c2
1+c3

�
(7.2)

Generate a random variable U , which is uniformly distributed over the in-

terval (0; 1). Then the thinktime X is defined as

X = 0 if U � p0; (7.3)

X =
U � p0

c1
if p0 � U � U�; (7.4)

U = max

�
U � p0

c1
; e

c2
c3 (1� U)

�
1

c3

�
if U > U�: (7.5)

The coefficient c3 = :647 < 1 would indicate that the thinktime distribution is

not only heavy–tailed, but does not even have a finite first moment. Figure 16

already shows that this conclusion is questionable. In fact, Figure 13 indicates



that an exponential tail for the thinktime distribution fits the data better. This

would be consistent with previous findings, that the think time distribution

has a decreasing hazardrate which at some point becomes constant. Figure

13 actually seems to indicate that after 4000 seconds the hazardrate starts

increasing. This is probably due to the fact that the observation periods span

only two hours.

For the purposes of this paper, we felt it was excusable to take liberties

with the thinktime distribution, see SubSection 9.1.

7.3 Human Gets

Figures 18, 19, 20, 21 and 22, give the “human get size” distribution for both

the modem and DSL customers. These are the distributions of the sizes of

the files that are transmitted as a direct consequence of the “human click”,

i.e. not including the files requested by subsequent computer gets. These

distributions are not differentiated with respect to the type of the human get.

Figure 23 repeats some of this information for dial–in customers only, and

adds some information on how we later simulate those distributions.

Based on these plots, we decided to generate, in the simulation, those “hu-

man gets” as follows:

From varies regression lines we obtained a number of constants, as follows:

c1 = 1:648; c2 = :328; c3 = 17:72; c4 = 1:92 : (7.6)

Generate U Unif(0; 1). The human get size X is obtained from
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Figure 23: Size of a human get distribution



X = min

�
e
c1
c2 (1� U)

�
1

c2 ; e
c3
c4 (1� U)

�
1

c4

�
(7.7)

The coefficient c4 = 1:92 < 2 in (7.6) indicates the distribution of the human

get filesizes is heavy tailed, with a finite first moment but an infinite variance.

A second look at Figures 23 and 22 indicates that for dial–in customers this

conclusion is warranted, while for DSL customers the distribution is even

worse heavy tailed. We did not obtain the (tail) shape parameter for DSL

human gets.

7.4 Computer Gets

Figures 24, 25 and 26 gives the computer get size distribution for both the

modem and DSL customers. These are the distributions of the sizes of the

files that are transported to the client in response to a “computer get”.

Figure 27 repeats some of this information for dial-in customers only, and

adds some information on how we plan to simulate these distributions.

Based on these data, we decided to generate, in the simulations, those

“computer gets” as follows: From a regression analysis we determined a few

coefficients:

c1 = 3:664; c2 = :665 : (7.8)

Draw a random variable U , Unif(0; 1). Then X, the size of the computer get

is first computed as

X = e
c1
c2 (1� U)

�
1

c2 : (7.9)
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Figure 26: Computer Get Size Distribution, log log plot
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Figure 27: Size of Computer Gets distribution, dial–in
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However, if this computation results in X > 20KBytes, we reset X to 20KBytes.

Because of this maximum of 20KBytes, the distribution is not heavy tailed.

7.5 Number of Computer Gets per Human Get

Figures 28, 29, 30, and 31 give the distributions of the numbers of “computer

gets” that are triggered by a single “human get”.

Figure 32 repeats some of this information for dial–in customers only, and

adds information on how we plan to simulate these data.
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Figure 32: Number of Computer Gets per Human Get



Based on these data, we decided to generate the number of “computer gets”

triggered by one “human get” as follows: First, by regression we determine a

number of coefficients:

c1 = �:3277; c2 = 1:264; c3 = 28:95; c4 = 8:359: (7.10)

Generate U Unif(0; 1). The number of computer gets generated by a human

get is now obtained from

K = min

�
e
c1
c2 (1� U)

�
1

c2 ; e
c3
c4 (1� U)

�
1

c4

�
: (7.11)

The coefficient c4 = 8:359 indicates that the distribution of the number of

computer gets per human gets, for dial–in customers, has a polynomial tail,

but has finite moments up to the eighth moments. It is possible the number of

computer gets per human get for DSL customers might be heavy-tailed. In the

simulation we used the distribution above, based on dial–in customer data.
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7.6 Total Bunch Sizes

Figure 33 gives the sizes of the “total bunch sizes” for both modem and DSL.

These are the distributions of the total numbers of bytes that follow a human

click, in the first file and later computer–requested files together.



8 Fit of Simulated and Real Data

Tables 22 and 23 give means and standard deviations for the simulated (com-

puted) and observed values.

mean standard deviation

human thinks 50.6737 254.714

number computer gets 2.20636 6.48535

computer gets 2238.19 3579.77

human gets 9581.93 31034.5

Table 22: Observed data from modem customers

mean standard deviation

human thinks 49.0845 353.39

number computer gets 2.0158 5.18086

computer gets 2574.14 4872.15

human gets 8729.03 23679.7

Table 23: Computed values based on modem customers data

Table 22, together with the preceding figures with distributions, is a com-

pendium of results on the observed data.

We see that for the “human gets” the data show higher variance than the

simulations. Since the “best” theoretical distribution fitting the data has infi-

nite variance, this could have come out either way.



9 Source Models and Provisioning

In this section we show how knowledge of customer behavior, in principle, can

be used to determine how heavily a link can be loaded before there is impact,

or serious impact, on the QoS received by the customers.

The source model used in this section is a model for behavior of HTTP

customers and is based on the data described in previous sections. The source

model will be explained in detail in the first sub-section. In later sub-sections,

simulation will be used to determine the throughputs various customers can

achieve under various load scenarios. Our philosophy is that any customer

who is transporting a large file to his “client” computer wants the last mile

access link to be the bottleneck. A customer who sees lower throughput than

his or her access line allows will feel he or she is not getting what he or she

paid for, and will be unhappy. Thus, the bandwidth of the access line is of

importance.

In the simulations to be used, there essentially is a constant number of

logged in customers, all surfing the web, all going through random thinktimes

and random bunches of files. The fact that the number of WebSurfing cus-

tomers is constant makes the achievable throughput unrealistically high. Fur-

ther study is needed to find the additional back-off needed to protect against

a varying number of connected customers, and against a varying number of

customers that are connected but away for significant amounts of time, or who

are doing other applications than WebSurfing. As long as much of the load is

generated by dial–in customers with access lines of 128 Kbit/sec or less, the

next step in the analysis depends on whether there is competition for dial–in

ports. If there is no such competition, the number of connected customers is
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more variable than if there is port congestion. Thus we are justified in solv-

ing a simplified problem, that only shows how important availability of source

models is.

9.1 The Simulation Model

Consider the network in Figure 34. In this figure there is a large number of

“WebSurfers” (at the left). Each of those WebSurfers is connected through the

Internet with one WebServer (at the right). We mimic HTTP 1.1 in that between

the Surfer and the Server there can be two (pairs of) TCP connections. We

simulate this by having two “TCP endstations” per client and per server: one

for each possible TCP connection.

The first of these connections always transports the “human get” (the file

explicitly requested by the human customer). The other TCP connection imme-

diately starts on the computer gets. When (or if) the first connection finishes



the “human get”, it starts transporting computer gets, if there is any the other

connection has not yet started on.

This, we feel, mimics the behavior of HTTP 1.1 with a maximum number of

simultaneous connections equal to 2.

In the simulation, when the next human get is of type type 1, we wait

until all previous file transfers are completed. Then we generate and wait one

“human thinktime”. At this point we ran into a fairly serious complication.

Due to memory constraints in our computers, and due to the fact that we

need two TCP connections per client–server pair, we could simulate with at

most 6000 client–server pairs. Hence, in order to generate sufficient load for

our studies, we generated think times which are one tenth the size of those

generated as in SubSection 7.2. This means that in our simulation the fraction

of active (i.e. “non–thinking”) clients is too high, and the number of active

clients is too close to deterministic.

This was the reason we felt at liberty not to look for a perfect fit in the

thinktime distribution.

Next we generate one “human get size” from the fitted distribution, a “num-

ber of computer gets” from the fitted distribution, and the “sizes of the com-

puter gets” from the fitted distribution. Next, we transmit the file of the human

get over the first TCP connection of the client–server pair, and the files of the

computer gets over both connections. We also draw the type of the next human

get from the transition matrix 19. If this is type 2 or type 3, we draw human

file size and number and sizes of computer gets, and immediately make them

available for transmission.

We simulated this system with up to 6000 customers, i.e. 6000 clients,



6000 servers, 12000 TCP connections client ! server, and 12000 TCP con-

nections server! client. We did this “without further complications” and later

with “further complications (in fact: additional connections). The results for

the runs without further complications are not interesting by themselves, but

will be presented to clarify the approach.

The results for the runs “without further complications” are first shown in

Figures 35 - 38. We show Carried Load (on the bottleneck link), Loss Rate,

“Normalized Load”, and “Offered Load” as function of the number of sources.

“Offered Load” is the number of bytes (including headers) that arrives, from the

servers, at the bottleneck port at the right, trying to get to the clients at the left.

“Carried Load” similarly is the number of bytes actually carried. “Normalized

Load” is essentially the same as carried load, only bytes (packets) that were

transmitted more than once (due to the TCP Protocol) are counted only once.

The “Loads” are given as fraction of the maximum the bottleneck can carry

(fraction of the bottleneck linespeed). Somewhat surprisingly, the offered load

never increases above the bottleneck linespeed: to have the “offered load”

(carried load plus blocked load) even approach .9 of link capacity, the “inherent

load” in terms of the number of active customers indicates an overload of

(about) 1.5. At that load, packet loss is sufficiently large to keep even the

offered load below the link bandwidth. We see that for high utilization offered

load is larger than carried load. The difference is the lost packets.

One lesson from this is that measuring carried load or offered load can be

quite misleading: there can be a wide range of different “inherent loads” that

result in essentially the same carried and offered loads.

Another lesson is that for essentially constant offered load and carried load,

traffic characteristics can change considerably, even if the traffic remains gen-
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Figure 35: Carried Load as function of Number N of Connections

erated by similar customers. In Figures 35 and 38, if the number of “cus-

tomers” increases from 3000 to 6000 the carried load and offered load remain

essentially constant, but clearly average congestion window sizes are decreas-

ing considerably, and hence “gross” traffic characteristics must be changing.

It is quite likely that for example the Hurst parameter is different at 3000

customers than at 6000 customers. This is an interesting problem for future

research. This kind of problem should be studied with more realistic thinktime

distributions.

A third lesson is that once the utilization is sufficiently high, measuring

carried load, or even carried load and offered load, does not give a clear pic-

ture of the level of congestion. Measuring carried and offered loads, while

simultaneously measuring or computing the loss rate may give enough infor-

mation.
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Figure 36: Loss Rate as function of Number N of Connections
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Figure 37: Normalized Throughput as function of Number N of Connections
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Figure 38: Offered Load as function of Number N of Connections
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Figure 39: Carried Load as function of Offered Load

Next, we re-arranged the data, giving in Figures 39 and 40 for the same

simulation runs the loss rate and carried load as function of the offered load.

Figure 41 gives the number of active clients (i.e. clients not in thinking

mode) over time, for the simulation run with a total of 2000 customers. We

see this number is too close to constant. We also see an interesting effect

of choosing as theoretical thinktime distribution one with an infinite mean

(c3 = :647 < 1 in Equation (7.1)): Over time, a larger and larger fraction of

clients gets hung up in a very long thinktime, and the number of active clients

decreases over time.
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Figure 40: Loss Rate as function of Offered Load
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Figure 41: Number of Active Customers among 2000
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Figure 42: Network with DS3 Bottleneck, 1 persistent TCP connection

10 The Simulation Results

This section contains the actual simulation results. We study two situations:

That with one additional (“persistent”) connection, and that with two such per-

sistent connections. In this context, a persistent connection is a TCP connec-

tion transporting an “infinitely” large file. This allows us to gauge the impact of

a large number of “typical” HTTP WebSurfers on a single customer (WebSurfer

or otherwise) who is moving a large file.

10.1 One Persistent Connection

The network used in this subsection is shown in Figure 42. In addition to

a large number of regular HTTP WebSurfers, there is one customer with a

persistent connection. That customer has a access channel of 28.8 Kbits/sec:

the customer is a dial–in customer using a 28.8 Kbit/sec modem.
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Figure 43: Carried Load as function of Number N of Connections

Figures 43 – 46 give carried load, loss rate, normalized throughput, and

offered load as function of the number of simulated HTTP WebSurfers.
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Figure 44: Loss Rate as function of Number N of Connections
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Figure 45: Normalized Throughput as function of Number N of Connections
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Figure 46: Offered Load as function of Number N of Connections



Next, we give for the same simulation results as in Figures 43 – 46 the

carried load and lossrate as function of the offered load. The results are given

in Figures 47 and 48. In Figure 47 we give carried load as function of (total)

offered load. We give total carried load as fraction of the bottleneck bandwidth,

and the carried load for the persistent 28.8Kbit/sec customer as fraction of

28.8Kbit/sec. To our surprise we see the latter carried load occasionally to

be larger than 1 (!). This is of course physically impossible. The explanation

is that we discard the first fifteen seconds of the simulation. The seemingly

large carried load is due to the fact that at 15 seconds the buffer in the left

shared router toward the client (receiver) of the persistent connection happens

to contain a large number of packets, while at the end of the simulation that

buffer is essentially empty. For the persistent connection, “carried load” is

really “normalized load” and is measured at the destination.

We see that up to an offered load of over 85% of the bottleneck linkspeed,

the persistent customer gets all the throughput his or her access line permits.

We could interpret this as meaning this link can be loaded, in the peak fifteen

minute of the week, up to 85% of the bottleneck linkspeed. This assumes

we use as engineering requirement that “28.8Kbit/sec” type customers must

almost always be able to get full use out of their access line.

While this specific conclusion is too optimistic (see arguments earlier in

the section), a refined version of this approach will lead to insight into accept-

able load levels. The fact that the throughput of the persistent connection

recovers at higher loads is probably due to a synchronization effect in the

simulation, and to randomly other connections encountering time-outs, thus

freeing bandwidth for the test connection. This shows the need for care in

interpreting results.
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Figure 47: Carried Load as function of Offered Load

Figure 48 gives loss rate, separately for all sources together and for the

persistent connection. We see that for high offered load the lossrate for a

single connection can vary wildly.
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10.2 Two Persistent Connections

The network simulated in this subsection is shown in Figure 49. It has two

persistent connections, one with an access channel of 28.8 Kbits/sec, the

other with an access channel of 1.5Mbit/sec, say a DSL or cable modem access

link.

In this network we do similar simulations as in the previous subsection, but

now we only show, in Figures 50 and 51, carried load and loss rate as function

of the offered load. In Figure 50 we show total throughput, throughput of the

28.8 persistent connection, and throughput of the T1 connection, respectively

as fraction of the total bottleneck bandwidth, of 28.8 Kbit/sec, and of 1.5

Mbit/sec. Similarly, Figure 51 gives total loss rate and loss rates of the two

persistent connections.
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In Figure 50 we see that the throughput of the persistent T1 connection

collapses at a lower offered load than that of the 28.8 persistent connection.

This is due to the fact the T1 connection, to get T1 throughput, needs a larger

congestion window than the 28.8 connection does in order to get 28.8 through-

put. A quantitative analysis is given in [6] (the square root formula for TCP).

We see that maximal acceptable offered load is lower when we engineer for

“T1” customers than when we engineer for “28.8Kbit/sec” customers.

It is interesting to note that in a previous (1998) study, see Tables 4 etc, we

also fitted a source model to measurements and analogous to Figures 50 and

51 we then obtained Figures 52 and 53.
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For the 1998 source model we notice that the throughput of the persistent

T1 connection collapses for an offered load below 80%, while the throughput of

the persistent 28.8 connection keeps going strong to about 90%. There clearly
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is a difference between Figures 50 and 51 on the hand hand, and Figures

52 and 53 on the other. While it is possible the smaller difference between

“loads of collapse” between T1 and 28.8 in 1999 than in 1998 is due to the

unrealistically small thinktimes in the 1999 simulation, we still must conclude

that the source model not only makes a difference for “safe operating levels”,

but also in the differential between QoS for customers with different access

bandwidths.

11 Conclusions

On the basis of the measurements, our analysis, and the simulations we ran,

we came to the following conclusions:



� Traffic generated by WebSurfers still is “heavy tailed”. In particular, the

sizes of files requested directly by human customers have, for dial–in

lines, a (tail) shape parameter � 1:92 < 2. For DSL customers the same

distribution has a (tail) shape parameter even lower, but we have not

determined it in this paper.

The distribution of the number of “computer gets” per “human get” has,

for dial–in customers, a (tail) shape parameter of 8:359, so that any well-

fitting theoretical distribution has finite first and second moments. For

DSL lines the similar distribution has a lower shape parameter. It is

conceivable that distribution is heavy tailed, we did not verify this.

We did not determine the shape of the distribution of the number of “hu-

man gets” per WebSurfing session. It is clear that the average number of

human gets per WebSurfing session is large. It is quite possible that this

gives another source of long range dependence.

� Our simulation results indicate that use of adequate source models can

indeed lead, with simulation, to insight into maximal acceptable load

levels on specific links, in say the busy 15 minutes of the week. However,

at this point simulation technology has become a bottleneck.

� There is need for further work on “Large Scale Simulation”. One of the

problems with our simulation runs was that we could not include suffi-

ciently many sources to create realistic heavy loads on (say) a DS3 link,

at least not without making thinktimes unrealistically small.

Such research in large scale simulation technology must take into ac-

count that most of the “other” (say background) traffic has closed loop

control (TCP), so that the traffic characteristics depend heavily not only



on the actual utilization of the link, but also on something we call the

“inherent load”, see SubSection 9.1. This is illustrated by the results in

SubSection 9.1.

� Knowledge of the bandwidths of the access lines of the customers is im-

portant in engineering of the network, (probably) mostly on the engineer-

ing of links relatively close to the edge of the network, such as links

internal to ISPs and links between ISPs and backbone carriers.

� While for most or all “routine” traffic monitoring use of “sniffers” that

only produce byte counts and packet counts of certain classes of flows

over say 15 minuter periods is adequate and probably preferable, use of

tools like TCPDump that collect entire traces is necessary to build reliable

source models. They also are a useful tool in estimating the distribution

of access bandwidths of active customers.

� We saw that access bandwidths of customers are important for engineer-

ing. This is true for several reasons. The one discussed in this paper

is that higher bandwidth customers need larger congestion windows to

fully utilize their access lines, and therefore need lower loss rates. An-

other relevant factor is that larger bandwidth customers generate wilder

fluctuating traffic. This effect was not studied in this paper. We showed

that the kind of measurements we used in this paper can be used to

estimate the access bandwidth distribution of active customers.

An issue not addressed in this paper is traffic forecasting. It is to be ex-

pected that stratified forecasting (seperate forecasts for several categories,

based on customer type, application, and possibly source and destination



(sub)–networks) will improve forecast accuracy. Stratification will certain facil-

itate tracking of forecasts and recognizing shifts in trends. The type of analysis

done in this study is an integral part of traffic stratification.

Appendix A An old WWW model

For some time we have been using a Source Model for WWW traffic that is

based on the data obtained in 1995 at Boston University by taking traces of

Web Accesses by students. This set of measurements we henceforth denote

as the “Bestavros and Crovella” data. We call the model the “Pseudo–Web

Model”. Because of the time elapsed since the measurements were taken, the

model must be considered out–dated. The model described in the Sections ...

above for the time being is a valid replacement. The old model still is a useful

reference model, and is given below. Changes must be due to many factors,

including more modern Browser Technology, a different test population, more

servers with a larger choice of Web pages, more graphics, etc.

More on the changing nature of network traffic can be found in [4] and [5]

We now call our old model for WWW traffic the “Pseudo – Web” model.

In the Pseudo – Web model, a source goes through a thinktime with a given

distribution (in seconds, see below) and then sends a file of which the size (the

number of bytes) follows a different given distribution, see below. Once the

last byte of the file has been acknowledged, the source resets its Congestion

Window cwnd to one MSS (Maximum Segment Size) and its Threshold ssthresh

to 64 KBytes, and when the next file is ready to be transported (one think time

later) it starts in “slowstart”. The simulation does not do the SYN and FIN



packets of real TCP.

Thinktime distributions and Filesize distributions were obtained from a

study of the Bestavros and Crovella data . This work was done mostly by

our colleague Arnold Neidhardt at Telcordia.

The Bestavros and Crovella data were obtained by monitoring the behavior

of students at Boston University who were given free access to the Web.

For file sizes in the Bestavros and Crovella data we found a simple distri-

bution (F denotes file size, in bytes):

PfF > fg = (1 + (
f

�
)�)�1; where (Appendix A.1)

� is themedian;

� > 1;

�� ��1
� �(

1

�
)� �(1�

1

�
) is themean:

If 0 < � � 1 Appendix A.1 still is a probability distribution, but that distribution

has no first moment.

For the Bestavros and Crovella data we found

� = 2190; � = 1:15066 :

Hence, the distribution Appendix A.1 has a finite mean but infinite vari-

ance.

The mean of the distribution Appendix A.1 is 14,954.22 bytes.

For the “thinktimes” T (in seconds) we found the distribution



PfT > tg = ph(1 + (
t

�h
)�h)�1 + pl(1 + (

t

�l
)�l)�1; (Appendix A.2)

where

ph + pl = 1; i:e: amixture of two distributions as inAppendixA:1; and

ph = 0:4953916; pl = :5046084

�h = 10; �h = 1:243437;

�l = 0:245032; �l = 3:252665:

The distribution in Appendix A.2 etc is a mixture of two distributions, one

(“h” for high) long tailed and one (“l” for low) with a finite variance and even a fi-

nite third moment. It is attractive to believe that the “l” thinktimes occur when

the computer (actually: the browser) chooses the next file to be downloaded

while the “h” thinktimes occur when it is the human customer who makes the

decision. A further discussion of when “thinktimes” are generated by humans

and when they are generated needs understanding of how browsers work, this

leads us too far afield.

The mean of the distribution Appendix A.2 is 21.83705 seconds. The two

distributions that make up the mixture have expected values E[Th] = 43:78729

seconds, resp E[Tl] = 0:2877263 seconds.

Appendix B List of Applications

The following is a list of “Applications” (such as WWW, NNTP, FTP etc) that

occurred in either the measurements used in this document or in other re-



cent measurements, with brief indications of portnumber used and further

documentation available.

� TCPMUX

TCPMUX is a protocol to contact multiple services on a single well-known

TCP port using a service name instead of a well-known number. In ad-

dition, private protocols can make use of the service without needing an

official TCP port assignment. TCP port 1. See RFC 1078 for details.

� FTP (File Transfer Protocol)

This is the protocol for (anonymous or not) transfer of files between users.

TCP ports 20 and 21. See RFC 765 for details.

� TELNET (Telnet Protocol)

Telnet’s primary goal is to allow a standard method of interfacing termi-

nal devices and terminal-oriented processes to each other, TCP port 23.

See RFC 854 for details.

� SMTP (Simple Mail Transfer Protocol)

TCP port 25. See RFC 821 for details. This is the mail protocol between

mail servers.

� WHO IS

Also known as NICNAME, TCP port 43. See RFC 812 for details.

� NI-FTP (NI File Transfer Protocol)

The NI File Transfer Protocol uses TCP port 47. We never saw this in any

of the data we used in this document.



� DNS (Domain Name System)

This is the distributed Name/Address mechanism in the Internet. TCP

and UDP port 53. See RFC 883 for details.

� WWW-HTTP (World Wide Web)

This is the well known Web traffic. It uses only TCP port 80. See

http://www.w3.org for details.

� HOSTS2-NS (HOSTS2 Name Server)

The HOSTS2 Name Server uses TCP port 81.

� POP3 (Post Office Protocol, version 3)

This is a protocol for fetching Email from a remote mailbox. It is the

protocol used when a user get its mail out of a mailserver. TCP port 110.

See RFC 1225 for details.

� NFS (Network File System)

A distributed file system developed by Sun Microsystems which allows a

set of computers to cooperatively access each other’s files in a transpar-

ent manner. TCP and UDP on RPC port 111. See RFC 1094 for details.

� AUTH (Authentication Service)

This provides a means to authenticate the identity of a user of a TCP

connection. TCP port 113. See RFC 931 for details.

� NNTP (Network News Transfer Protocol)

This is a protocol for distribution, inquiry, retrieval, and posting of news

articles. It uses TCP port 119. See RFC 977 for details.

� NTP (Network Time Protocol)

NTP provides the mechanisms to synchronize time and coordinate time



distribution in a large, diverse internet. UDP port 123. See RFC 1305 for

details.

� Net Bios (Network Basic Input Output System)

This is a protocol designed for groups of PCs, sharing a broadcast medium.

It uses both TCP and UDP, port 137. See RFCs 1001 and 1002 for details.

� SNMP (Simple Network Management Protocol)

UDP ports 161, 162, 164, 165. See RFC 1448 for details.

� HTTPS This is the “secure” version of HTTP. TCP portnumber 443. See

the Internet Drafts on Transport Layer Security at http://www.ietf.org

for details.

� Route

UDP port 520. This is a variation on the Xerox NS Routing Information

Protocol (RIP).

� ICMP (Internet Control Message Protocol)

ICMP is the protocol used to handle errors and control messages at the

IP layer. ICMP is actually part of the IP protocol. The port varies. See

RFC 792 for details.

� SYSLOG

Syslog log file, UDP port 514.

� NIM

TCP port 1058. Network Installation Management (IBM).

� Lotus Note

TCP port 1352.



� RGTP

TCP port 1431. Reverse Gossip Transport.

� NKD

TCP port 1650.

� Elvin

TCP port 2916. Push News.

� ESRI SDE

UDP port 5151. Spatial Database Engine.

� fcp-addr-srvr1

TCP port 5500.

� IRC

TCP port 6667. Internet Relay Chat, see http://www.mirc.com for de-

tails.

� Real Audio

UDP port 6970.
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